928 resultados para Knock out
Resumo:
La protéine d’échafaudage Gab1 amplifie la signalisation de plusieurs récepteurs à fonction tyrosine kinase (RTK). Entre autres, elle promeut la signalisation du VEGFR2, un RTK essentiel à la médiation de l’angiogenèse via le VEGF dans les cellules endothéliales. En réponse au VEGF, Gab1 est phosphorylé sur tyrosine, ce qui résulte en la formation d’un complexe de protéines de signalisation impliqué dans le remodelage du cytosquelette d’actine et la migration des cellules endothéliales. Gab1 est un modulateur essentiel de l’angiogenèse in vitro et in vivo. Toutefois, malgré l’importance de Gab1 dans les cellules endothéliales, les mécanismes moléculaires impliqués dans la médiation de ses fonctions, demeurent mal définis et la participation du second membre de la famille, Gab2, reste inconnue. Dans un premier temps, nous avons démontré que tout comme Gab1, Gab2 est phosphorylé sur tyrosine, qu’il s’associe de façon similaire avec des protéines de signalisation et qu’il médie la migration des cellules endothéliales en réponse au VEGF. Cependant, contrairement à Gab1, Gab2 n’interagit pas avec le VEGFR2 et n’est pas essentiel pour l’activation d’Akt et la promotion de la survie cellulaire. En fait, nous avons constaté que l’expression de Gab2 atténue l’expression de Gab1 et l’activation de la signalisation médiée par le VEGF. Ainsi, Gab2 semble agir plutôt comme un régulateur négatif des signaux pro-angiogéniques induits par Gab1. La migration cellulaire est une des étapes cruciales de l’angiogenèse. Nous avons démontré que Gab1 médie l’activation de la GTPase Rac1 via la formation et la localisation d’un complexe protéique incluant la GEF VAV2, la p120Caténine et la Cortactine aux lamellipodes des cellules endothéliales en réponse au VEGF. De plus, nous montrons que l’assemblage de ce complexe corrèle avec la capacité du VEGF à induire l’invasion des cellules endothéliales et le bourgeonnement de capillaires, deux phénomènes essentiels au processus angiogénique. La régulation des RhoGTPases est également régulée par des inactivateurs spécifiques les « Rho GTPases activating proteins », ou GAPs. Nous décrivons ici pour la première fois le rôle de la GAP CdGAP dans les cellules endothéliales et démontrons son importance dans la médiation de la signalisation du VEGF via la phosphorylation sur tyrosine de Gab1 et l’activation des RhoGTPases Rac1 et Cdc42. Ainsi, dù à son importance sur l’activation de voies de signalisation du VEGF, CdGAP représente un régulateur crucial de la promotion de diverses activités biologiques essentielles à l’angiogenèse telles que la migration cellulaire, et le bourgeonnement de capillaires in vitro et d’aortes de souris ex vivo. De plus, les embryons de souris CdGAP KO présentent des hémorragies et de l’œdème, et ces défauts vasculaires pourraient être responsables de la mortalité de 44% des souris CdGAP knock-out attendues. Nos études amènent donc une meilleure compréhension des mécanismes moléculaires induits par le VEGF et démontrent l’implication centrale de Gab1 et des régulateurs des RhoGTPases dans la promotion de l’angiogenèse. Cette meilleure compréhension pourrait mener à l’identification de nouvelles cibles ou approches thérapeutiques afin d’améliorer le traitement des patients souffrant de maladies associées à une néovascularisation incontrôlée telles que le cancer.
Resumo:
La santé folliculaire est déterminée par un nombre de facteurs endocriniens, paracrines et autocrines. Les gonadotrophines hypophysaires sont les principaux moteurs du développement du follicule, mais leurs actions sont modulées localement par les hormones et des facteurs de croissance. Les glycoprotéines de la famille des WNTs représentent une grande famille de molécules impliquées dans différentes voies de signalisation. Ils sont sécrétés dans le but de moduler et coordonner la réponse des follicules aux gonadotrophines, et leurs activités sont indispensables à la fonction ovarienne et à la fertilité féminine. Les WNTs sont généralement classés en fonction de la (des) voie(s) qu’ils activent. Le rôle des membres de la voie canonique WNT et de ses composants tels que CTNNB1, WNT4, WNT2, FZD1 et FZD4 est bien établi au cours du développement du follicule chez les rongeurs. Un rôle similaire des WNTs dans les espèces mono-ovulatoires demeure essentiellement inconnu. De plus, le rôle des WNT non canoniques dans l'ovaire de rongeurs est méconnu. Les objectifs de cette thèse sont (1) d'élucider la régulation hormonale de l'expression de WNT5A et le rôle physiologique de WNT5A dans les cellules de la granulosa bovine in vitro et (2) d'identifier les rôles physiologiques de WNT5A dans l'ovaire de souris par inactivation génique conditionnelle. Chacun de ces objectifs a mené à la publication d’un article à partir des résultats obtenus au cours de cette thèse. Dans le premier article, le rôle de WNT5A dans les cellules de la granulosa bovine a été étudié in vitro. Nous avons constaté que WNT5A est un régulateur négatif de la stéroïdogenèse stimulée par la FSH issue des cellules de la granulosa, et qu'il agit en supprimant l'activité de signalisation des WNTs canoniques tout en induisant la voie de signalisation MAPK8/JUN. le deuxième article, afin d’examiner le rôle de deux WNTs non-canoniques, WNT5A et WNT11, à différents stades de développement folliculaire, nous avons généré des modèles de souris knock-out conditionnels ciblant les cellules de la granulosa pour chacun de ces WNTs. Les résultats obtenus ont permis de mettre en évidence que WNT5A est nécessaire pour assurer la fertilité normale chez la femelle, le développement folliculaire et la stéroïdogenèse ovarienne. Il est aussi un antagoniste de la réponse aux gonadotrophines, agissant par l’intermédiaire de la suppression de la signalisation canonique des WNTs. Chez les souris knock-out pour WNT11, nous ne constatons aucun défaut important dans la fertilité des femelles. L’ensemble de notre travail met en évidence que WNT5A est essentiel pour le développement normal du follicule et qu’il agit pour inhiber la différenciation des cellules de la granulosa. En résumé, nous avons fourni une étude novatrice et approfondie, utilisant plusieurs modèles et techniques pour déterminer les mécanismes par lesquels WNT5A régule le développement des follicules.
Resumo:
L’angiogenèse et l’augmentation de la perméabilité vasculaire sont des éléments clés pour la croissance et la progression tumorale. Par conséquent, de nombreux efforts sont déployés à comprendre les mécanismes moléculaires impliqués dans la formation et le remodelage des vaisseaux sanguins de manière à identifier de nouvelles cibles thérapeutiques potentielles. De cette optique, les travaux de cette thèse se sont concentrés sur la protéine tyrosine phosphatase DEP-1, initialement identifiée comme un régulateur négatif de la prolifération et de la phosphorylation du VEGFR2 lorsque fortement exprimée dans les cellules endothéliales. Toutefois, en utilisant une approche d’ARNi, il a été démontré que via sa capacité à déphosphoryler la tyrosine inhibitrice de Src (Y529), DEP-1 était également un régulateur positif de l’activation de Src dans les cellules endothéliales stimulées au VEGF. Puisque Src joue un rôle central dans la promotion de l’angiogenèse et la perméabilité vasculaire, nous avons en plus démontré que DEP-1 était un promoteur de ces fonctions in vitro et que la tyrosine phosphorylation de sa queue C-terminale, permettant l’interaction et l’activation de Src, était requise. Les travaux de recherche présentés dans cette thèse démontrent dans un premier temps à partir d’une souris Dep1 KO, dont le développement ne présente aucun phénotype apparent, que la perte de l’expression de DEP-1 se traduit en une inhibition de l’activation de Src et de l’un de ses substrats, la VE-Cadherine, en réponse au VEGF chez la souris adulte. Nos résultats démontrent donc, pour la première fois, le rôle primordial de DEP-1 dans l’induction de la perméabilité vasculaire et de la formation de capillaires in vivo. Conséquemment, la croissance tumorale et la formation de métastases aux poumons sont réduites due à une inhibition de leur vascularisation ce qui se traduit par une diminution de la prolifération et une augmentation de l’apoptose des cellules cancéreuses. De façon intéressante, l’expression élevée de DEP-1 dans les vaisseaux sanguins tumoraux de patientes atteintes du cancer du sein corrèle avec une vascularisation accrue de la tumeur. En plus du rôle de DEP-1 dans la réponse angiogénqiue à l’âge adulte, nos travaux ont également démontré le rôle important de DEP-1 lors de la vascularisation de la rétine, un modèle in vivo d’angiogenèse développementale. Dans ce contexte, DEP-1 inhibe la prolifération des cellules endothéliales et limite leur bourgeonnement et la complexification du réseau vasculaire rétinien en permettant l’expression adéquate du Dll4, un régulateur crucial de l’organisation de la vascularisation développementale. Cette expression du Dll4 découlerait de la stabilisation de la β-caténine par l’inactivation de la GSK3β, un régulateur important de la dégradation de la β-caténine, en réponse au VEGF selon la voie de signalisation VEGFR2-Src-PI3K-Akt-GSK3β. Ainsi, ces travaux identifient DEP-1 comme un régulateur important de l’organisation vasculaire rétinienne. Les rôles positifs de DEP-1 dans les cellules endothéliales découlent principalement de sa capacité à lier et activer la kinase Src. En plus de contribuer à la réponse angiogénique, Src est également un oncogène bien caractérisé notamment pour sa contribution au programme invasif des cellules cancéreuses mammaires. Les travaux de cette thèse illustrent que DEP-1 est préférentiellement exprimée dans les cellules cancéreuses mammaires invasives et qu’il régule l’activation de Src, de voies de signalisation invasives et, par le fait même, de l’invasivité de ces cellules in vitro et in vivo. De façon intéressante, ces observations corrèlent avec des données cliniques où l’expression modérée de DEP-1 est associée à un mauvais pronostic de survie et de rechute. Ces résultats démontrent donc, pour la première fois, le rôle positif de DEP-1 dans l’activation de Src au niveau des cellules endothéliales et des cellules cancéreuses mammaires ce qui permet la régulation du bourgeonnement endothélial, de la perméabilité vasculaire, de l’angiogenèse normale et pathologique en plus de l’invasion tumorale.
Resumo:
La déficience intellectuelle est la cause d’handicap la plus fréquente chez l’enfant. De nombreuses évidences convergent vers l’idée selon laquelle des altérations dans les gènes synaptiques puissent expliquer une fraction significative des affections neurodéveloppementales telles que la déficience intellectuelle ou encore l’autisme. Jusqu’à récemment, la majorité des mutations associées à la déficience intellectuelle a été liée au chromosome X ou à la transmission autosomique récessive. D’un autre côté, plusieurs études récentes suggèrent que des mutations de novo dans des gènes à transmission autosomique dominante, requis dans les processus de la plasticité synaptique peuvent être à la source d’une importante fraction des cas de déficience intellectuelle non syndromique. Par des techniques permettant la capture de l’exome et le séquençage de l’ADN génomique, notre laboratoire a précédemment reporté les premières mutations pathogéniques dans le gène à transmission autosomique dominante SYNGAP1. Ces dernières ont été associées à des troubles comportementaux tels que la déficience intellectuelle, l’inattention, des problèmes d’humeur, d’impulsivité et d’agressions physiques. D’autres patients sont diagnostiqués avec des troubles autistiques et/ou des formes particulières d’épilepsie généralisée. Chez la souris, le knock-out constitutif de Syngap1 (souris Syngap1+/-) résulte en des déficits comme l’hyperactivité locomotrice, une réduction du comportement associée à l’anxiété, une augmentation du réflexe de sursaut, une propension à l’isolation, des problèmes dans le conditionnement à la peur, des troubles dans les mémoires de travail, de référence et social. Ainsi, la souris Syngap1+/- représente un modèle approprié pour l’étude des effets délétères causés par l’haploinsuffisance de SYNGAP1 sur le développement de circuits neuronaux. D’autre part, il est de première importance de statuer si les mutations humaines aboutissent à l’haploinsuffisance de la protéine. SYNGAP1 encode pour une protéine à activité GTPase pour Ras. Son haploinsuffisance entraîne l’augmentation des niveaux d’activité de Ras, de phosphorylation de ERK, cause une morphogenèse anormale des épines dendritiques et un excès dans la concentration des récepteurs AMPA à la membrane postsynaptique des neurones excitateurs. Plusieurs études suggèrent que l’augmentation précoce de l’insertion des récepteurs AMPA au sein des synapses glutamatergiques contribue à certains phénotypes observés chez la souris Syngap1+/-. En revanche, les conséquences de l’haploinsuffisance de SYNGAP1 sur les circuits neuronaux GABAergiques restent inconnues. Les enjeux de mon projet de PhD sont: 1) d’identifier l’impact de mutations humaines dans la fonction de SYNGAP1; 2) de déterminer si SYNGAP1 contribue au développement et à la fonction des circuits GABAergiques; 3) de révéler comment l’haploinsuffisance de Syngap1 restreinte aux circuits GABAergiques affecte le comportement et la cognition. Nous avons publié les premières mutations humaines de type faux-sens dans le gène SYNGAP1 (c.1084T>C [p.W362R]; c.1685C>T [p.P562L]) ainsi que deux nouvelles mutations tronquantes (c.2212_2213del [p.S738X]; c.283dupC [p.H95PfsX5]). Ces dernières sont toutes de novo à l’exception de c.283dupC, héritée d’un père mosaïque pour la même mutation. Dans cette étude, nous avons confirmé que les patients pourvus de mutations dans SYNGAP1 présentent, entre autre, des phénotypes associés à des troubles comportementaux relatifs à la déficience intellectuelle. En culture organotypique, la transfection biolistique de l’ADNc de Syngap1 wild-type dans des cellules pyramidales corticales réduit significativement les niveaux de pERK, en fonction de l’activité neuronale. Au contraire les constructions plasmidiques exprimant les mutations W362R, P562L, ou celle précédemment répertoriée R579X, n’engendre aucun effet significatif sur les niveaux de pERK. Ces résultats suggèrent que ces mutations faux-sens et tronquante résultent en la perte de la fonction de SYNGAP1 ayant fort probablement pour conséquences d’affecter la régulation du développement cérébral. Plusieurs études publiées suggèrent que les déficits cognitifs associés à l’haploinsuffisance de SYNGAP1 peuvent émerger d’altérations dans le développement des neurones excitateurs glutamatergiques. Toutefois, si, et auquel cas, de quelle manière ces mutations affectent le développement des interneurones GABAergiques résultant en un déséquilibre entre l’excitation et l’inhibition et aux déficits cognitifs restent sujet de controverses. Par conséquent, nous avons examiné la contribution de Syngap1 dans le développement des circuits GABAergiques. A cette fin, nous avons généré une souris mutante knockout conditionnelle dans laquelle un allèle de Syngap1 est spécifiquement excisé dans les interneurones GABAergiques issus de l’éminence ganglionnaire médiale (souris Tg(Nkx2.1-Cre);Syngap1flox/+). En culture organotypique, nous avons démontré que la réduction de Syngap1 restreinte aux interneurones inhibiteurs résulte en des altérations au niveau de leur arborisation axonale et dans leur densité synaptique. De plus, réalisés sur des coupes de cerveau de souris Tg(Nkx2.1-Cre);Syngap1flox/+, les enregistrements des courants inhibiteurs postsynaptiques miniatures (mIPSC) ou encore de ceux évoqués au moyen de l’optogénétique (oIPSC) dévoilent une réduction significative de la neurotransmission inhibitrice corticale. Enfin, nous avons comparé les performances de souris jeunes adultes Syngap1+/-, Tg(Nkx2.1-Cre);Syngap1flox/+ à celles de leurs congénères contrôles dans une batterie de tests comportementaux. À l’inverse des souris Syngap1+/-, les souris Tg(Nkx2.1-Cre);Syngap1flox/+ ne présentent pas d’hyperactivité locomotrice, ni de comportement associé à l’anxiété. Cependant, elles démontrent des déficits similaires dans la mémoire de travail et de reconnaissance sociale, suggérant que l’haploinsuffisance de Syngap1 restreinte aux interneurones GABAergiques dérivés de l’éminence ganglionnaire médiale récapitule en partie certains des phénotypes cognitifs observés chez la souris Syngap1+/-. Mes travaux de PhD établissent pour la première fois que les mutations humaines dans le gène SYNGAP1 associés à la déficience intellectuelle causent la perte de fonction de la protéine. Mes études dévoilent, également pour la première fois, l’influence significative de ce gène dans la régulation du développement et de la fonction des interneurones. D’admettre l’atteinte des cellules GABAergiques illustre plus réalistement la complexité de la déficience intellectuelle non syndromique causée par l’haploinsuffisance de SYNGAP1. Ainsi, seule une compréhension raffinée de cette condition neurodéveloppementale pourra mener à une approche thérapeutique adéquate.
Design and study of self-assembled functional organic and hybrid systems for biological applications
Resumo:
The focus of self-assembly as a strategy for the synthesis has been confined largely to molecules, because of the importance of manipulating the structure of matter at the molecular scale. We have investigated the influence of temperature and pH, in addition to the concentration of the capping agent used for the formation of the nano-bio conjugates. For example, the formation of the narrower size distribution of the nanoparticles was observed with the increase in the concentration of the protein, which supports the fact that γ-globulin acts both as a controller of nucleation as well as stabiliser. As analyzed through various photophysical, biophysical and microscopic techniques such as TEM, AFM, C-AFM, SEM, DLS, OPM, CD and FTIR, we observed that the initial photoactivation of γ-globulin at pH 12 for 3 h resulted in small protein fibres of ca. Further irradiation for 24 h, led to the formation of selfassembled long fibres of the protein of ca. 5-6 nm and observation of surface plasmon resonance band at around 520 nm with the concomitant quenching of luminescence intensity at 680 nm. The observation of light triggered self-assembly of the protein and its effect on controlling the fate of the anchored nanoparticles can be compared with the naturally occurring process such as photomorphogenesis.Furthermore,our approach offers a way to understand the role played by the self-assembly of the protein in ordering and knock out of the metal nanoparticles and also in the design of nano-biohybrid materials for medicinal and optoelectronic applications. Investigation of the potential applications of NIR absorbing and water soluble squaraine dyes 1-3 for protein labeling and anti-amyloid agents forms the subject matter of the third chapter of the thesis. The study of their interactions with various proteins revealed that 1-3 showed unique interactions towards serum albumins as well as lysozyme. 69%, 71% and 49% in the absorption spectra as well as significant quenching in the fluorescence intensity of the dyes 1-3, respectively. Half-reciprocal analysis of the absorption data and isothermal titration calorimetric (ITC) analysis of the titration experiments gave a 1:1 stoichiometry for the complexes formed between the lysozyme and squaraine dyes with association constants (Kass) in the range 104-105 M-1. We have determined the changes in the free energy (ΔG) for the complex formation and the values are found to be -30.78, -32.31 and -28.58 kJmol-1, respectively for the dyes 1, 2 and 3. Furthermore, we have observed a strong induced CD (ICD) signal corresponding to the squaraine chromophore in the case of the halogenated squaraine dyes 2 and 3 at 636 and 637 nm confirming the complex formation in these cases. To understand the nature of interaction of the squaraine dyes 1-3 with lysozyme, we have investigated the interaction of dyes 1-3 with different amino acids. These results indicated that the dyes 1-3 showed significant interactions with cysteine and glutamic acid which are present in the side chains of lysozyme. In addition the temperature dependent studies have revealed that the interaction of the dye and the lysozyme are irreversible. Furthermore, we have investigated the interactions of these NIR dyes 1-3 with β- amyloid fibres derived from lysozyme to evaluate their potential as inhibitors of this biologically important protein aggregation. These β-amyloid fibrils were insoluble protein aggregates that have been associated with a range of neurodegenerative diseases, including Huntington, Alzheimer’s, Parkinson’s, and Creutzfeldt-Jakob diseases. We have synthesized amyloid fibres from lysozyme through its incubation in acidic solution below pH 4 and by allowing to form amyloid fibres at elevated temperature. To quantify the binding affinities of the squaraine dyes 1-3 with β-amyloids, we have carried out the isothermal titration calorimetric (ITC) measurements. The association constants were determined and are found to be 1.2 × 105, 3.6× 105 and 3.2 × 105 M-1 for the dyes, 1-3, respectively. To gain more insights into the amyloid inhibiting nature of the squaraine dyes under investigations, we have carried out thioflavin assay, CD, isothermal titration calorimetry and microscopic analysis. The addition of the dyes 1-3 (5μM) led to the complete quenching in the apparent thioflavin fluorescence, thereby indicating the destabilization of β-amyloid fibres in the presence of the squaraine dyes. Further, the inhibition of the amyloid fibres by the squaraine dyes 1-3, has been evidenced though the DLS, TEM AFM and SAED, wherein we observed the complete destabilization of the amyloid fibre and transformation of the fibre into spherical particles of ca. These results demonstrate the fact that the squaraine dyes 1-3 can act as protein labeling agents as well as the inhibitors of the protein amyloidogenesis. The last chapter of the thesis describes the synthesis and investigation of selfassembly as well as bio-imaging aspects of a few novel tetraphenylethene conjugates 4-6.Expectedly, these conjugates showed significant solvatochromism and exhibited a hypsochromic shift (negative solvatochromism) as the solvent polarity increased, and these observations were justified though theoretical studies employing the B3LYP/6-31g method. We have investigated the self-assembly properties of these D-A conjugates though variation in the percentage of water in acetonitrile solution due to the formation of nanoaggregates. Further the contour map of the observed fluorescence intensity as a function of the fluorescence excitation and emission wavelength confirmed the formation of J-type aggregates in these cases. To have a better understanding of the type of self-assemblies formed from the TPE conjugates 4-6, we have carried out the morphological analysis through various microscopic techniques such as DLS, SEM and TEM. 70%, we observed rod shape architectures having ~ 780 nm in diameter and ~ 12 μM in length as evidenced through TEM and SEM analysis. We have made similar observations with the dodecyl conjugate 5 at ca. 70% and 50% water/acetonitrile mixtures, the aggregates formed from 4 and 5 were found to be highly crystalline and such structures were transformed to amorphous nature as the water fraction was increased to 99%. To evaluate the potential of the conjugate as bio-imaging agents, we have carried out their in vitro cytotoxicity and cellular uptake studies though MTT assay, flow cytometric and confocal laser scanning microscopic techniques. Thus nanoparticle of these conjugates which exhibited efficient emission, large stoke shift, good stability, biocompatibility and excellent cellular imaging properties can have potential applications for tracking cells as well as in cell-based therapies. In summary we have synthesized novel functional organic chromophores and have studied systematic investigation of self-assembly of these synthetic and biological building blocks under a variety of conditions. The investigation of interaction of water soluble NIR squaraine dyes with lysozyme indicates that these dyes can act as the protein labeling agents and the efficiency of inhibition of β-amyloid indicate, thereby their potential as anti-amyloid agents.
Resumo:
RNA interference (RNAi) is a recently discovered process, in which double stranded RNA (dsRNA) triggers the homology-dependant degradation of cognate messenger RNA (mRNA). In a search for new components of the RNAi machinery in Dictyostelium, a new gene was identified, which was called helF. HelF is a putative RNA helicase, which shows a high homology to the helicase domain of Dicer, to the helicase domain of Dictyostelium RdRP and to the C. elegans gene drh-1, that codes for a dicer related DExH-box RNA helicase, which is required for RNAi. The aim of the present Ph.D. work was to investigate the role of HelF in PTGS, either induced by RNAi or asRNA. A genomic disruption of the helF gene was performed, which resulted in a distinct mutant morphology in late development. The cellular localization of the protein was elucidated by creating a HelF-GFP fusion protein, which was found to be localized in speckles in the nucleus. The involvement of HelF in the RNAi mechanism was studied. For this purpose, RNAi was induced by transformation of RNAi hairpin constructs against four endogenous genes in wild type and HelF- cells. The silencing efficiency was strongly enhanced in the HelF K.O. strain in comparison with the wild type. One gene, which could not be silenced in the wild type background, was successfully silenced in HelF-. When the helF gene was disrupted in a secondary transformation in a non-silenced strain, the silencing efficiency was strongly improved, a phenomenon named here “retrosilencing”. Transcriptional run-on experiments revealed that the enhanced gene silencing in HelF- was a posttranscriptional event, and that the silencing efficiency depended on the transcription levels of hairpin RNAs. In HelF-, the threshold level of hairpin transcription required for efficient silencing was dramatically lowered. The RNAi-mediated silencing was accompanied by the production of siRNAs; however, their amount did not depend on the level of hairpin transcription. These results indicated that HelF is a natural suppressor of RNAi in Dictyostelium. In contrast, asRNA mediated gene silencing was not enhanced in the HelF K.O, as shown for three tested genes. These results confirmed previous observations (H. Martens and W. Nellen, unpublished) that although similar, RNAi and asRNA mediated gene silencing mechanisms differ in their requirements for specific proteins. In order to characterize the function of the HelF protein on a molecular level and to study its interactions with other RNAi components, in vitro experiments were performed. Besides the DEAH-helicase domain, HelF contains a double-stranded RNA binding domain (dsRBD) at its N-terminus, which showed high similarity to the dsRBD domain of Dicer A from Dictyostelium. The ability of the recombinant dsRBDs from HelF and Dicer A to bind dsRNA was examined and compared. It was shown by gel-shift assays that both HelF-dsRBD and Dicer-dsRBD could bind directly to long dsRNAs. However, HelF-dsRBD bound more efficiently to dsRNA with imperfect matches than to perfect dsRNA. Both dsRBDs bound specifically to a pre-miRNA substrate (pre-let-7). The results suggested that most probably there were two binding sites for the proteins on the pre-miRNA substrate. Moreover, it was shown that HelF-dsRBD and Dicer-dsRBD have siRNA-binding activity. The affinities of the two dsRBDs to the pre-let-7 substrate were also examined by plasmon surface resonance analyses, which revealed a 9-fold higher binding affinity of the Dicer-dsRBD to pre-let-7 compared to that of the HelF-dsRBD. The binding of HelF-dsRBD to the pre-let-7 was impaired in the presence of Mg2+, while the Dicer-dsRBD interaction with pre-let-7 was not influenced by the presence of Mg2+. The results obtained in this thesis can be used to postulate a model for HelF function. In this, HelF acts as a nuclear suppressor of RNAi in wild type cells by recognition and binding of dsRNA substrates. The protein might act as a surveillance system to avoid RNAi initiation by fortuitous dsRNA formation or low abundance of dsRNA trigger. If the protein acts as an RNA helicase, it could unwind fold-back structures in the nucleus and thus lead to decreased RNAi efficiency. A knock-out of HelF would result in initiation of the RNAi pathway even by low levels of dsRNA. The exact molecular function of the protein in the RNAi mechanism still has to be elucidated. RNA interferenz (RNAi) ist ein in jüngster Zeit entdeckter Mechanismus, bei dem doppelsträngige RNA Moleküle (dsRNA) eine Homologie-abhängige Degradation einer verwandten messenger-RNA (mRNA) auslösen. Auf der Suche nach neuen Komponenten der RNAi-Maschinerie in Dictyostelium konnte ein neues Gen (helF) identifiziert werden. HelF ist eine putative RNA-Helikase mit einer hohen Homologie zur Helikasedomäne der bekannten Dicerproteine, der Helikasedomäne der Dictyostelium RdRP und zu dem C. elegans Gen drh-1, welches für eine Dicer-bezogene DExH-box RNA Helikase codiert, die am RNAi-Mechanismus beteiligt ist. Das Ziel dieser Arbeit war es, die Funktion von HelF im Zusammenhang des RNAi oder asRNA induzierten PTGS zu untersuchen. Es wurde eine Unterbrechung des helF-Gens auf genomischer Ebene (K.O.) vorgenommen, was bei den Mutanten zu einer veränderten Morphologie in der späten Entwicklung führte. Die Lokalisation des Proteins in der Zelle konnte mit Hilfe einer GFP-Fusion analysiert werden und kleinen Bereichen innerhalb des Nukleus zugewiesen werden. Im Weiteren wurde der Einfluss von HelF auf den RNAi-Mechanismus untersucht. Zu diesem Zweck wurde RNAi durch Einbringen von RNAi Hairpin-Konstrukten gegen vier endogene Gene im Wiltypstamm und der HelF--Mutante induziert. Im Vergleich zum Wildtypstamm konnte im HelF--Mutantenstamm eine stark erhöhte „Silencing“-Effizienz nachgewiesen werden. Ein Gen, welches nach RNAi Initiation im Wildtypstamm unverändert blieb, konnte im HelF--Mutantenstamm erfolgreich stillgelegt werden. Durch sekundäres Einführen einer Gendisruption im helF-Locus in einen Stamm, in welchem ein Gen nicht stillgelegt werden konnte, wurde die Effizienz des Stilllegens deutlich erhöht. Dieses Phänomen wurde hier erstmals als „Retrosilencing“ beschrieben. Mit Hilfe von transkriptionellen run-on Experimenten konnte belegt werden, dass es sich bei dieser erhöhten Stilllegungseffizienz um ein posttranskriptionelles Ereignis handelte, wobei die Stillegungseffizienz von der Transkriptionsstärke der Hairpin RNAs abhängt. Für die HelF--Mutanten konnte gezeigt werden, dass der Schwellenwert zum Auslösen eines effizienten Stillegens dramatisch abgesenkt war. Obwohl die RNAi-vermittelte Genstilllegung immer mit der Produktion von siRNAs einhergeht, war die Menge der siRNAs nicht abhängig von dem Expressionsniveau des Hairpin-Konstruktes. Diese Ergebnisse legen nahe, dass es sich bei der HelF um einen natürlichen Suppressor des RNAi-Mechanismus in Dictyostelium handelt. Im Gegensatz hierzu war die as-vermittelte Stilllegung von drei untersuchten Genen im HelF-K.O. im Vergleich zum Wildyp unverändert. Diese Ergebnisse bestätigten frühere Beobachtungen (H. Martens und W. Nellen, unveröffentlicht), wonach die Mechanismen für RNAi und asRNA-vermittelte Genstilllegung unterschiedliche spezifische Proteine benötigen. Um die Funktion des HelF-Proteins auf der molekularen Ebene genauer zu charakterisieren und die Interaktion mit anderen RNAi-Komponenten zu untersuchen, wurden in vitro Versuche durchgeführt. Das HelF-Protein enthält, neben der DEAH-Helikase-Domäne eine N-terminale Doppelstrang RNA bindende Domäne (dsRBD) mit einer hohen Ähnlichkeit zu der dsRBD des Dicer A aus Dictyostelium. Die dsRNA-Bindungsaktivität der beiden dsRBDs aus HelF und Dicer A wurde analysiert und verglichen. Es konnte mithilfe von Gel-Retardationsanalysen gezeigt werden, dass sowohl HelF-dsRBD als auch Dicer-dsRBD direkt an lange dsRNAs binden können. Hierbei zeigte sich, dass die HelF-dsRBD eine höhere Affinität zu einem imperfekten RNA-Doppelstrang besitzt, als zu einer perfekt gepaarten dsRNA. Für beide dsRBDs konnte eine spezifische Bindung an ein pre-miRNA Substrat nachgewiesen werden (pre-let-7). Dieses Ergebnis legt nah, dass es zwei Bindestellen für die Proteine auf dem pre-miRNA Substrat gibt. Überdies hinaus konnte gezeigt werden, dass die dsRBDs beider Proteine eine siRNA bindende Aktivität besitzen. Die Affinität beider dsRBDs an das pre-let-7 Substrat wurde weiterhin mit Hilfe der Plasmon Oberflächen Resonanz untersucht. Hierbei konnte eine 9-fach höhere Bindeaffinität der Dicer-dsRBD im Vergleich zur HelF-dsRBD nachgewiesen werden. Während die Bindung der HelF-dsRBD an das pre-let-7 durch die Anwesenheit von Mg2+ beeinträchtigt war, zeigte sich kein Einfluß von Mg2+ auf das Bindeverhalten der Dicer-dsRBD. Mit Hilfe der in dieser Arbeit gewonnen Ergebnisse lässt sich ein Model für die Funktion von HelF postulieren. In diesem Model wirkt HelF durch Erkennen und Binden von dsRNA Substraten als Suppressor von der RNAi im Kern. Das Protein kann als Überwachungsystem gegen eine irrtümliche Auslösung von RNAi wirken, die durch zufällige dsRNA Faltungen oder eine zu geringe Häufigkeit der siRNAs hervorgerufen sein könnte. Falls das Protein eine Helikase-Aktivität besitzt, könnte es rückgefaltete RNA Strukturen im Kern auflösen, was sich in einer verringerten RNAi-Effizienz wiederspiegelt. Durch Ausschalten des helF-Gens würde nach diesem Modell eine erfolgreiche Auslösung von RNAi schon bei sehr geringer Mengen an dsRNA möglich werden. Das Modell erlaubt, die exakte molekulare Funktion des HelF-Proteins im RNAi-Mechanismus weiter zu untersuchen.
Resumo:
"Funktionelle Analyse der LC-FACS in Dictyostelium discoideum" Das Dictyostelium discoideum Gen fcsA kodiert für ein 75 kDa großes Protein. Es kann durch Homologieanyalysen der Amino-säuresequenz zu den "long-chain fatty acyl-CoA"-Synthetasen ge-rechnet werden, die lang-kettige Fettsäuren durch die kovalente Bindung von Coenzym A akti-vie-ren und damit für diverse Reak-tionen in Stoffwechsel und Molekül-Synthese der Zelle verfügbar machen. Die hier untersuchte D. discoideum LC-FACS lokalisiert als peripher assoziiertes Protein an der cytosolischen Seite der Membran von Endo-somen und kleiner Vesikel. Bereits kurz nach der Bildung in der frühen sauren Phase kann die Lokalisation der LC-FACS auf Endosomen ge-zeigt werden. Sie dissoziiert im Laufe ihrer Neutra-li-sierung und kann auf späten Endosomen, die vor ihrer Exocytose stehen nicht mehr nach-gewiesen werden. Ein Teil der kleinen die in der gesamte Zelle verteilten kleinen Vesikel zeigt eine Kolokalisation mit lysosomalen Enzymen. Trotz des intrazellulären Verteilungs-mus-ters, das eine Beteiligung dieses Pro-teins an der Endocytose nahe-legt, konnte kein signifikanter Rückgang der Pino- und Phagocytose-Rate in LC-FACS Nullmutanten beobachtet werden. Der endo-cy-to-ti-sche Transit ist in diesen Zellen etwas verlängert, außerdem zeigen die Endosomen einen deutlich erhöhten pH-Wert, was zu einer weniger effektiven Prozessierung eines lysosomalen Enzyms führt (a-Mannosidase). Die Funktion der LC-FACS ist die Aufnahme von langkettigen Fettsäuren aus dem Lumen der Endosomen.
Resumo:
Thioredoxins are small, regulatory proteins with a mass of approximately 12 kDa and a characteristic conserved active center, which is represented in the pentapeptide trp-cys-gly-pro-cys. Up to now it is not possible to present a complete list of thioredoxin interaction partners because there is no predictable sequence in the target enzymes where thioredoxins can interact with. To get closer information about the functions and possible interaction partners of the three thioredoxins from the social soil amoeba Dictyostelium discoideum (DdTrx1 - 3) we have chosen two different strategies. In the first one the thioredoxin levels in the cell should changed by different mutants. But both the antisense technique as well as the creation of knock out mutants were not appropiate strategies in this case. Just an thioredoxin overexpressing mutant results in a developmental phenotype which allows some conclusions for possible functions of the thioredoxin in Dictyostelium discoideum. The second strategie was the two hybrid system where thioredoxin interactions partners can identified systematically. After a screening with a cDNA library from Dictyostelium 13 potential interaction partners could be detected, among them a ribonucleotid reductase, TRFA, two different cytochrome c oxidase subunits, filopodin, three ribosomal proteins, the elongationfactor 1a and the alcohol dehydrogenase from yeast. The verification of the interaction between thioredoxin and these two hybrid clones happened indirectly by a dobble mutant of thioredoxin 1, where the cysteines in the active center were replaced by redox-inactive serins. Further examinations of two choosen candidates resulted that the alcohol dehydrogenase from yeast is a thioredoxin-modululated enzym and that there is an interaction between the elongationfactor 1a and the thioredoxin 1 from Dictyostelium discoideum.
Resumo:
With molecular biology methods and bioinformatics, the Argonaute proteins in Dictyostelium discoideum were characterized, and the function of the AgnA protein in RNAi and DNA methylation was investigated, as well as cellular features. Also interaction partners of the PAZ-Piwi domain of AgnA (PAZ-PiwiAgnA) were discovered. The Dictyostelium genome encodes five Argonaute proteins, termed AgnA/B/C/D/E. The expression level of Argonaute proteins was AgnB/D/E > AgnA > AgnC. All these proteins contain the characteristic conserved of PAZ and Piwi domains. Fluorescence microscopy revealed that the overexpressed C-terminal GFP-fusion of PAZ-PiwiAgnA (PPWa-GFP) localized to the cytoplasm. Overexpression of PPWa-GFP leaded to an increased gene silencing efficiency mediated by RNAi but not by antisense RNA. This indicated that PAZ-PiwiAgnA is involved in the RNAi pathway, but not in the antisense pathway. An analysis of protein-protein interactions by a yeast-two-hybrid screen on a cDNA library from vegetatively grown Dictyostelium revealed that several proteins, such as EF2, EF1-I, IfdA, SahA, SamS, RANBP1, UAE1, CapA, and GpdA could interact with PAZ-PiwiAgnA. There was no interaction between PAZ-PiwiAgnA and HP1, HelF and DnmA detected by direct yeast-two-hybrid analysis. The fluorescence microscopy images showed that the overexpressed GFP-SahA or IfdA fusion proteins localized to both cytoplasm and nuclei, while the overexpressed GFP-SamS localized to the cytoplasm. The expression of SamS in AgnA knock down mutants was strongly down regulated on cDNA and mRNA level in, while the expression of SahA was only slightly down regulated. AgnA knock down mutants displayed defects in growth and phagocytosis, which suggested that AgnA affects also cell biological features. The inhibition of DNA methylation on DIRS-1 and Skipper retroelements, as well as the endogenous mvpB and telA gene, observed for the same strains, revealed that AgnA is involved in the DNA methylation pathway. Northern blot analysis showed that Skipper and DIRS-1 were rarely expressed in Ax2, but the expression of Skipper was upregulated in AgnA knock down mutants, while the expression of DIRS-1 was not changed. A knock out of the agnA gene failed even though the homologous recombination of the disruption construct occurred at the correct site, which indicated that there was a duplication of the agnA gene in the genome. The same phenomenon was also observed in ifdA knock out experiments.
Resumo:
Die Endozytose und die anschließende Verwertung der aufgenommenen Substanzen ist Gegenstand zahlreicher Untersuchungen. Dabei wird ein besonderes Augenmerk auf die Proteine gelegt, die an diesen Vorgängen beteiligt sind. In der hier vorliegenden Arbeit wird der Lipid-Status der Zelle und Enzyme des Lipid-Stoffwechsels berücksichtigt. Das Ausschalten einer Long Chain-Fatty Acyl CoA Synthetase 1 (LC-FACS), fcsB, in Dictyostelium discoideum hat eine Veränderung der Menge an neutralen Lipiden zur Folge. In diesen LC-FACS2 „Knock-Out“-Zellen wird ein Zusammenhang zwischen neutralen Lipiden und der Phagozytose von Hefen und Bakterien detektiert. Ein Einfluss auf den endozytotischen Transit kann in diesen Zellen nur induziert werden, wenn man zusätzlich den Triglycerid-Hydrolyse-Inhibitor LSD1 in den Zellen exprimiert. Mit Hilfe der Daten wird ein Modell erstellt, indem die Reduktion der Menge an neutralen Lipiden nicht direkt für diesen Phänotyp verantwortlich ist. Es ist vielmehr das Energie-Niveau der Zellen, das die Phagozytoserate beeinflusst. Möglich macht dies ein Pool aus Fettsäuren im Zytoplasma. Dieser besteht aus unaktivierten Fettsäuren und Acyl-CoAs. Auf ihn greifen Kompartimente wie Lipidtropfen, Mitochondrien und Peroxisomen zu, wenn Fettsäuren verstoffwechselt werden sollen. In LC-FACS2 „Knock-Out“-Zellen, wird das Gleichgewicht im Pool in Richtung der unaktivierten Fettsäuren verschoben. Anhand der Größe dieses Pools kann die Zelle ihren Energiestatus messen. Ein höherer Energie-Status führt dann zu einer Reduktion der Phagozytoserate. Vacuolin B Null Zellen (vacB-) zeigen eine extreme Verzögerung im endozytotischen Transit. Schaltet man in diesen Zellen die LC-FACS1 aus (vacB-/fcsA-), so reduziert man ebenfalls die Menge an Triglyceriden. Dies ist darauf zurückzuführen, dass der Acyl-CoA Anteil des Fettsäure-Pools reduziert ist. Diese Reduktion resultiert hier in einer Beschleunigung des endozytotischen Transits. Die Exozytose von vacB--Zellen und vacB-/ fcsA--Zellen unterscheidet sich nicht. Daher wird die Ursache für diese Beschleunigung in veränderten Fusions- bzw. Fissionseigenschaften der Endosomen vermutet. Somit führt das Ausschalten von LC-FACS-Proteinen in Dictyostelium zu einer veränderten Zusammensetzung des Fettsäure-Pools. Dies hat im Fall der LC-FACS1 Modifikationen der Membran-Dynamik und im Fall der LC-FACS2 Änderungen des Energie-Spiegels zur Folge.
Resumo:
DNA methyltransferases of type Dnmt2 are a highly conserved protein family with enigmatic function. The aim of this work was to characterize DnmA, the Dnmt2 methyltransferase in Dictyostelium discoideum, and further to investigate its implication in DNA methylation and transcriptional gene silencing. The genome of the social amoeba Dictyostelium encodes DnmA as the sole DNA methyltransferase. The enzyme bears all ten characteristic DNA methyltransferase motifs in its catalytic domain. The DnmA mRNA was found by RT-PCR to be expressed during vegetative growth and down regulated during development. Investigations using fluorescence microscopy showed that both DnmA-myc and DnmA-GFP fusions predominantly localised to the nucleus. The function of DnmA remained initially unclear, but later experiment revealed that the enzyme is an active DNA methyltransferase responsible for all DNA (cytosine) methylation in Dictyostelium. Neither in gel retardation assays, nor by the yeast two hybrid system, clues on the functionality of DnmA could be obtained. However, immunological detection of the methylation mark with an α - 5mC antibody gave initial evidence that the DNA of Dictyostelium was methylated. Furthermore, addition of 5-aza-cytidine as demethylating agent to the Dictyostelium medium and subsequent in vitro incubation of the DNA isolated from these cells with recombinant DnmA showed that the enzyme binds slightly better to this target DNA. In order to investigate further the function of the protein, a gene knock-out for dnmA was generated. The gene was successfully disrupted by homologous recombination, the knock-out strain, however, did not show any obvious phenotype under normal laboratory conditions. To identify specific target sequences for DNA methylation, a microarray analysis was carried out. Setting a threshold of at least 1.5 fold for differences in the strength of gene expression, several such genes in the knock-out strain were chosen for further investigation. Among the up-regulated genes were the ESTs representing the gag and the RT genes respectively of the retrotransposon skipper. In addition Northern blot analysis confirmed the up-regulation of skipper in the DnmA knock-out strain. Bisufite treatment and sequencing of specific DNA stretches from skipper revealed that DnmA is responsible for methylation of mostly asymmetric cytosines. Together with skipper, DIRS-1 retrotransposon was found later also to be methylated but was not present on the microarray. Furthermore, skipper transcription was also up-regulated in strains that had genes disrupted encoding components of the RNA interference pathway. In contrast, DIRS 1 expression was not affected by a loss of DnmA but was strongly increased in the strain that had the RNA directed RNA polymerase gene rrpC disrupted. Strains generated by propagating the usual wild type Ax2 and the DnmA knock-out cells over 16 rounds in development were analyzed for transposon activity. Northern blot analysis revealed activation for skipper expression, but not for DIRS-1. A large number of siRNAs were found to be correspondent to the DIRS-1 sequence, suggesting concerted regulation of DIRS-1 expression by RNAi and DNA methylation. In contrast, no siRNAs corresponding to the standard skipper element were found. The data show that DNA methylation plays a crucial role in epigenetic gene regulation in Dictyostelium and that different, partially overlapping mechanisms control transposon silencing for skipper and DIRS-1. To elucidate the mechanism of targeting the protein to particular genes in the Dictyostelium genome, some more genes which were up-regulated in the DnmA knock-out strain were analyzed by bisulfite sequencing. The chosen genes are involved in the multidrug response in other species, but their function in Dictyostelium is uncertain. Bisulfite data showed that two of these genes were methylated at asymmetrical C-residues in the wild type, but not in DnmA knock-out cells. This suggested that DNA methylation in Dictyostelium is involved not only in transposon regulation but also in transcriptional silencing of specific genes.
Resumo:
Heterochromatin Protein 1 (HP1) is an evolutionarily conserved protein required for formation of a higher-order chromatin structures and epigenetic gene silencing. The objective of the present work was to functionally characterise HP1-like proteins in Dictyostelium discoideum, and to investigate their function in heterochromatin formation and transcriptional gene silencing. The Dictyostelium genome encodes three HP1-like proteins (hcpA, hcpB, hcpC), from which only two, hcpA and hcpB, but not hcpC were found to be expressed during vegetative growth and under developmental conditions. Therefore, hcpC, albeit no obvious pseudogene, was excluded from this study. Both HcpA and HcpB show the characteristic conserved domain structure of HP1 proteins, consisting of an N-terminal chromo domain and a C-terminal chromo shadow domain, which are separated by a hinge. Both proteins show all biochemical activities characteristic for HP1 proteins, such as homo- and heterodimerisation in vitro and in vivo, and DNA binding activtity. HcpA furthermore seems to bind to K9-methylated histone H3 in vitro. The proteins thus appear to be structurally and functionally conserved in Dictyostelium. The proteins display largely identical subnuclear distribution in several minor foci and concentration in one major cluster at the nuclear periphery. The localisation of this cluster adjacent to the nucleus-associated centrosome and its mitotic behaviour strongly suggest that it represents centromeric heterochromatin. Furthermore, it is characterised by histone H3 lysine-9 dimethylation (H3K9me2), which is another hallmark of Dictyostelium heterochromatin. Therefore, one important aspect of the work was to characterise the so-far largely unknown structural organisation of centromeric heterochromatin. The Dictyostelium homologue of inner centromere protein INCENP (DdINCENP), co-localized with both HcpA and H3K9me2 during metaphase, providing further evidence that H3K9me2 and HcpA/B localisation represent centromeric heterochromatin. Chromatin immunoprecipitation (ChIP) showed that two types of high-copy number retrotransposons (DIRS-1 and skipper), which form large irregular arrays at the chromosome ends, which are thought to contain the Dictyostelium centromeres, are characterised by H3K9me2. Neither overexpression of full-length HcpA or HcpB, nor deletion of single Hcp isoforms resulted in changes in retrotransposon transcript levels. However, overexpression of a C-terminally truncated HcpA protein, assumed to display a dominant negative effect, lead to an increase in skipper retrotransposon transcript levels. Furthermore, overexpression of this protein lead to severe growth defects in axenic suspension culture and reduced cell viability. In order to elucidate the proteins functions in centromeric heterochromatin formation, gene knock-outs for both hcpA and hcpB were generated. Both genes could be successfully targeted and disrupted by homologous recombination. Surprisingly, the degree of functional redundancy of the two isoforms was, although not unexpected, very high. Both single knock-out mutants did not show any obvious phenotypes under standard laboratory conditions and only deletion of hcpA resulted in subtle growth phenotypes when grown at low temperature. All attempts to generate a double null mutant failed. However, both endogenous genes could be disrupted in cells in which a rescue construct that ectopically expressed one of the isoforms either with N-terminal 6xHis- or GFP-tag had been introduced. The data imply that the presence of at least one Hcp isoform is essential in Dictyostelium. The lethality of the hcpA/hcpB double mutant thus greatly hampered functional analysis of the two genes. However, the experiment provided genetic evidence that the GFP-HcpA fusion protein, because of its ability to compensate the loss of the endogenous HcpA protein, was a functional protein. The proteins displayed quantitative differences in dimerisation behaviour, which are conferred by the slightly different hinge and chromo shadow domains at the C-termini. Dimerisation preferences in increasing order were HcpA-HcpA << HcpA-HcpB << HcpB-HcpB. Overexpression of GFP-HcpA or a chimeric protein containing the HcpA C-terminus (GFP-HcpBNAC), but not overexpression of GFP-HcpB or GFP-HcpANBC, lead to increased frequencies of anaphase bridges in late mitotic cells, which are thought to be caused by telomere-telomere fusions. Chromatin targeting of the two proteins is achieved by at least two distinct mechanisms. The N-terminal chromo domain and hinge of the proteins are required for targeting to centromeric heterochromatin, while the C-terminal portion encoding the CSD is required for targeting to several other chromatin regions at the nuclear periphery that are characterised by H3K9me2. Targeting to centromeric heterochromatin likely involves direct binding to DNA. The Dictyostelium genome encodes for all subunits of the origin recognition complex (ORC), which is a possible upstream component of HP1 targeting to chromatin. Overexpression of GFP-tagged OrcB, the Dictyostelium Orc2 homologue, showed a distinct nuclear localisation that partially overlapped with the HcpA distribution. Furthermore, GFP-OrcB localized to the centrosome during the entire cell cycle, indicating an involvement in centrosome function. DnmA is the sole DNA methyltransferase in Dictyostelium required for all DNA(cytosine-)methylation. To test for its in vivo activity, two different cell lines were established that ectopically expressed DnmA-myc or DnmA-GFP. It was assumed that overexpression of these proteins might cause an increase in the 5-methyl-cytosine(5-mC)-levels in the genomic DNA due to genomic hypermethylation. Although DnmA-GFP showed preferential localisation in the nucleus, no changes in the 5-mC-levels in the genomic DNA could be detected by capillary electrophoresis.
Resumo:
Eukaryotic DNA m5C methyltransferases (MTases) play a major role in many epigenetic regulatory processes like genomic imprinting, X-chromosome inactivation, silencing of transposons and gene expression. Members of the two DNA m5C MTase families, Dnmt1 and Dnmt3, are relatively well studied and many details of their biological functions, biochemical properties as well as interaction partners are known. In contrast, the biological functions of the highly conserved Dnmt2 family, which appear to have non-canonical dual substrate specificity, remain enigmatic despite the efforts of many researchers. The genome of the social amoeba Dictyostelium encodes Dnmt2-homolog, the DnmA, as the only DNA m5C MTase which allowed us to study Dnmt2 function in this organism without interference by the other enzymes. The dnmA gene can be easily disrupted but the knock-out clones did not show obvious phenotypes under normal lab conditions, suggesting that the function of DnmA is not vital for the organism. It appears that the dnmA gene has a low expression profile during vegetative growth and is only 5-fold upregulated during development. Fluorescence microscopy indicated that DnmA-GFP fusions were distributed between both the nucleus and cytoplasm with some enrichment in nuclei. Interestingly, the experiments showed specific dynamics of DnmA-GFP distribution during the cell cycle. The proteins colocalized with DNA in the interphase and were mainly removed from nuclei during mitosis. DnmA functions as an active DNA m5C MTase in vivo and is responsible for weak but detectable DNA methylation of several regions in the Dictyostelium genome. Nevertheless, gel retardation assays showed only slightly higher affinity of the enzyme to dsDNA compared to ssDNA and no specificity towards various sequence contexts, although weak but detectable specificity towards AT-rich sequences was observed. This could be due to intrinsic curvature of such sequences. Furthermore, DnmA did not show denaturant-resistant covalent complexes with dsDNA in vitro, although it could form covalent adducts with ssDNA. Low binding and methyltransfer activity in vitro suggest the necessity of additional factor in DnmA function. Nevertheless, no candidates could be identified in affinity purification experiments with different tagged DnmA fusions. In this respect, it should be noted that tagged DnmA fusion preparations from Dictyostelium showed somewhat higher activity in both covalent adduct formation and methylation assays than DnmA expressed in E.coli. Thus, the presence of co-purified factors cannot be excluded. The low efficiency of complex formation by the recombinant enzyme and the failure to define interacting proteins that could be required for DNA methylation in vivo, brought up the assumption that post-translational modifications could influence target recognition and enzymatic activity. Indeed, sites of phosphorylation, methylation and acetylation were identified within the target recognition domain (TRD) of DnmA by mass spectrometry. For phosphorylation, the combination of MS data and bioinformatic analysis revealed that some of the sites could well be targets for specific kinases in vivo. Preliminary 3D modeling of DnmA protein based on homology with hDNMT2 allowed us to show that several identified phosphorylation sites located on the surface of the molecule, where they would be available for kinases. The presence of modifications almost solely within the TRD domain of DnmA could potentially modulate the mode of its interaction with the target nucleic acids. DnmA was able to form denaturant-resistant covalent intermediates with several Dictyostelium tRNAs, using as a target C38 in the anticodon loop. The formation of complexes not always correlated with the data from methylation assays, and seemed to be dependent on both sequence and structure of the tRNA substrate. The pattern, previously suggested by the Helm group for optimal methyltransferase activity of hDNMT2, appeared to contribute significantly in the formation of covalent adducts but was not the only feature of the substrate required for DnmA and hDNMT2 functions. Both enzymes required Mg2+ to form covalent complexes, which indicated that the specific structure of the target tRNA was indispensable. The dynamics of covalent adduct accumulation was different for DnmA and different tRNAs. Interestingly, the profiles of covalent adduct accumulation for different tRNAs were somewhat similar for DnmA and hDNMT2 enzymes. According to the proposed catalytic mechanism for DNA m5C MTases, the observed denaturant-resistant complexes corresponded to covalent enamine intermediates. The apparent discrepancies in the data from covalent complex formation and methylation assays may be interpreted by the possibility of alternative pathways of the catalytic mechanism, leading not to methylation but to exchange or demethylation reactions. The reversibility of enamine intermediate formation should also be considered. Curiously, native gel retardation assays showed no or little difference in binding affinities of DnmA to different RNA substrates and thus the absence of specificity in the initial enzyme binding. The meaning of the tRNA methylation as well as identification of novel RNA substrates in vivo should be the aim of further experiments.
Resumo:
Lipid droplets (LDs) are the universal storage form of fat as a reservoir of metabolic energy in animals, plants, bacteria and single celled eukaryotes. Dictyostelium LD formation was investigated in response to the addition of different nutrients to the growth medium. LDs were induced by adding exogenous cholesterol, palmitic acid (PA) as well as growth in bacterial suspension, while glucose addition fails to form LDs. Among these nutrients, PA addition is most effective to stimulate LD formation, and depletion of PA from the medium caused LD degradation. The neutral lipids incorporated into the LD-core are composed of triacylglycerol (TAG), steryl esters, and an unknown neutral lipid (UKL) species when the cells were loaded simultaneously with cholesterol and PA. In order to avoid the contamination with other cellular organelles, the LD-purification method was modified. The isolated LD fraction was analysed by mass spectrometry and 100 proteins were identified. Nineteen of these appear to be directly involved in lipid metabolism or function in regulating LD morphology. Together with a previous study, a total of 13 proteins from the LD-proteome were confirmed to localize to LDs after the induction with PA. Among the identified LD-proteins, the localization of Ldp (lipid droplet membrane protein), GPAT3 (glycerol-3-phosphate acyltransferase 3) and AGPAT3 (1-acylglycerol-3-phosphate-acyltransferase 3) were further verified by GFP-tagging at the N-termini or C-termini of the respective proteins. Fluorescence microscopy demonstrated that PA-treatment stimulated the translocation of the three proteins from the ER to LDs. In order to clarify DGAT (diacylglycerol acyltransferase) function in Dictyostelium, the localization of DGAT1, that is not present in LD-proteome, was also investigated. GFP-tagged DGAT1 localized to the ER both, in the presence and absence of PA, which is different from the previously observed localization of GFP-tagged DGAT2, which almost exclusively binds to LDs. The investigation of the cellular neutral lipid level helps to elucidate the mechanism responsible for LD-formation in Dictyostelium cells. Ldp and two short-chain dehydrogenases, ADH (alcohol dehydrogenase) and Ali (ADH-like protein), are not involved in neutral lipid biosynthesis. GPAT, AGPAT and DGAT are three transferases responsible for the three acylation steps of de novo TAG synthesis. Knock-out (KO) of AGPAT3 and DGAT2 did not affect storage-fat formation significantly, whereas cells lacking GPAT3 or DGAT1 decreased TAG and LD accumulation dramatically. Furthermore, DGAT1 is responsible for the accumulation of the unknown lipid UKL. Overexpression of DGAT2 can rescue the reduced TAG content of the DGAT1-KO mutant, but fails to restore UKL content in these cells, indicating that of DGAT1 and DGAT2 have overlapping functions in TAG synthesis, but the role in UKL formation is unique to DGAT1. Both GPAT3 and DGAT1 affect phagocytic activity. Mutation of GPAT3 increases it but a DGAT1-KO decreases phagocytosis. The double knockout of DGAT1 and 2 also impairs the ability to grow on a bacterial lawn, which again can be rescued by overexpression of DGAT2. These and other results are incorporated into a new model, which proposes that up-regulation of phagocytosis serves to replenish precursor molecules of membrane lipid synthesis, whereas phagocytosis is down-regulated when excess fatty acids are used for storage-fat formation.
Resumo:
Introducción: El TDAH tiene un componente genético importante; el gen de transportador de Dopamina (DAT1) se ha asociado con susceptibilidad al TDAH y con sus endofenotipos. El VNTR de 40pb en la región 3’UTR aumenta la expresión del DAT1. En Colombia no hay ningún estudio previo que indique evidencia de la asociación genética entre TDAH y el gen DAT1. Objetivo: Determinar asociación entre el VNTR del DAT1 y el fenotipo y/o endofenotipos del TDAH. Métodos: Se seleccionaron 73 pacientes con TDAH y 75 controles, se valoró en los casos inteligencia y funciones ejecutivas. Mediante (PCR) se amplificó el VNTR DAT1. Se establecieron estadísticos genético poblacionales, análisis de asociación y de regresión logística entre las pruebas neuropsicológicas y genotipo. Resultado: El polimorfismo del DAT1 no mostró asociación con TDAH, ni con alteraciones en las funciones ejecutivas. El genotipo 10/10 del VNTR DAT1 se encontró asociado con el índice de velocidad de procesamiento (p <0,05). En el subgrupo hiperactividad hubo asociación con algunas subpruebas de flexibilidad cognitiva, número de respuestas correctas, total de errores, número de respuestas perseverativas (p ≤ 0.01). En el subgrupo mixto se asoció con índice de comprensión verbal (p <0,05). Conclusiones: No hubo asociación entre el polimorfismo VNTR (DAT1) y el fenotipo de TDAH. Se encontraron asociaciones entre genotipo y algunos test de flexibilidad cognitiva e índice de comprensión verbal. Se establecieron los estadísticos genético poblacionales de este polimorfismo para la población analizada, el cual corresponde al primer reporte de una muestra de nuestro país.