270 resultados para Klebsiella penumoniae
Resumo:
The catecholic cephalosporin BRL 41897 A is resistant to β-lactamases and is taken up by bacteria via the iron transport system. The uptake of this antibiotic in E.coli uses the Fiu and Cir outer membrane proteins, whereas in P. aerugtnosa it enters via the pyochelin transport system. In this thesis mutants of K. pneumoniae resistant to BRL 41897A were isolated using TnphoA mutagenesis and used to study the mechanism of uptake of BRL 41897A by K. pneumoniae. The activity of BRL 41897A towards the parent strain (M10) was increased in iron depleted media, whereas no significant differences in the resistant (KSL) mutants were observed. Three mutants (KSL19, KSL38and KSL59) produced decreased amounts of certain iron-regulated outer membrane proteins. The uptake of 55Fe-BRL 41897A by M10 in iron-deficient medium was higher than in iron-rich medium. This result indicated the involvement of an iron transport system in the uptake of BRL 41897A by K. pneumoniae. Uptake by the KSL mutants in iron-deficient culture was higher than that by M10. This result, supported by analysis of outer membrane and periplasmic proteins of the KSL mutants, indicates that loss of one outer membrane protein can be compensated by over expression of other outer membrane and/or periplasmic proteins. However, the increased uptake of BRL 41897A by the KSL mutants did not reflect increased activity towards these strains, indicating that there are defects in the transport of BRL 41897A resulting in failure to reach the penicillin binding protein target sites in the cytoplasmic membrane. Southern blotting of chromosomal digests and sequencing in one mutant (KSL19) showed that only one copy of TnphoA was inserted into its chromosome. A putative TnphoA inserted gene in KSL19, designated kslA, carrying a signal sequence was identified. Transformation of a fragment containing the kslA gene into KSL19 cells restored the sensitivity to BRL 41897A to that of the parent strain. Data base peptide sequence searches revealed that the kslA gene in the KSL19 has some amino acid homology with the E. coli ExbD protein, which is involved in stabilisation of the TonB protein.
Resumo:
Resumo:
Klebsiella pneumoniae U25 is a multidrug resistant strain isolated from a tertiary care hospital in Chennai, India. Here, we report the complete annotated genome sequence of strain U25 obtained using PacBio RSII. This is the first report of the whole genome of K. pneumoniae species from Chennai. It consists of a single circular chromosome of size 5,491,870-bp and two plasmids of size 211,813 and 172,619-bp. The genes associated with multidrug resistance were identified. The chromosome of U25 was found to have eight antibiotic resistant genes [blaOXA-1, blaSHV-28, aac(6’)1b-cr, catB3, oqxAB, dfrA1]. The plasmid pMGRU25-001 was found to have only one resistant gene (catA1) while plasmid pMGRU25-002 had 20 resistant genes [strAB, aadA1, aac(6’)-Ib, aac(3)-IId, sul1,2, blaTEM-1A,1B, blaOXA-9, blaCTX-M-15, blaSHV-11, cmlA1, erm(B), mph(A)]. A mutation in the porin OmpK36 was identified which is likely to be associated with the intermediate resistance to carbapenems in the absence of carbapenemase genes. U25 is one of the few K. pneumoniae strains to harbour clustered regularly interspaced short palindromic repeats (CRISPR) systems. Two CRISPR arrays corresponding to Cas3 family helicase were identified in the genome. When compared to K. pneumoniae NTUHK2044, a transposase gene InsH of IS5-13 was found inserted.
Resumo:
We describe the genetic background of bla(TEM-4) and the complete sequence of pRYC11::bla(TEM-4), a mosaic plasmid that is highly similar to pKpQIL-like variants, predominant among TEM-4 producers in a Spanish hospital (1990 to 2004), which belong to Klebsiella pneumoniae and Escherichia coli high-risk clones responsible for the current spread of different antibiotic resistance genes. Predominant populations of plasmids and host adapted clonal lineages seem to have greatly contributed to the spread of resistance to extended-spectrum cephalosporins.
Resumo:
Seven Klebsiella pneumoniae isolates from dogs and cats in Spain were found to be highly resistant to aminoglycosides, and ArmA methyltransferase was responsible for this phenotype. All isolates were typed by multilocus sequence typing (MLST) as ST11, a human epidemic clone reported worldwide and associated with, among others, OXA-48 and NDM carbapenemases. In the seven strains, armA was borne by an IncR plasmid, pB1025, of 50 kb. The isolates were found to coproduce DHA-1 and SHV-11 β-lactamases, as well as the QnrB4 resistance determinant. This first report of the ArmA methyltransferase in pets illustrates their importance as a reservoir for human multidrug-resistant K. pneumoniae.
Resumo:
The inactivation of the mgrB gene, which encodes a negative-feedback regulator of the PhoPQ signaling system, was recently shown to be a common mutational mechanism responsible for acquired polymyxin resistance among carbapenemase-producing Klebsiella pneumoniae strains from clinical sources. In this work, we show that mgrB mutants can easily be selected in vitro from different K. pneumoniae lineages, and mgrB inactivation is not associated with a significant biological cost.
Resumo:
Introduction Chronic wounds are an area of major concern. The on-going and in-direct costs are substantial, reaching far beyond the costs of the hospitalization and associated care. As a result, pharmacological therapies have been developed to address treatment insufficiencies, however, the availability of drugs capable of promoting the wound repair process still remain limited. The wound healing properties of various herbal plants is well recognised amongst indigenous Australians. Hence, based on traditional accounts, we evaluated the wound healing potential of two Australian native plants. Methods Bioactive compounds were methanol extracted from dried plant leaves that were commercially sourced. Primary keratinocyte (Kc) and fibroblast (Fib) cells (denoted as Kc269, Kc274, Kc275, Kc276 and Fib274) obtained from surgical discarded tissue were cultured in 48-well plates and incubated (37⁰C, 5% CO2) overnight. The growth media was discarded and replaced with fresh growth media plus various concentrations (15.12 µg/mL, 31.25 µg/mL, 62.5 µg/mL, 125 µg/mL, 250 µg/mL and 500 µg/mL) of the plant extracts. Cellular responses were measured using the alamarBlue® assay and the CyQUANT® assay. Plant extracts in the aqueous phase were prepared by boiling whole leaves in water and taking aqueous phase samples at various (1, 2 , 5 minutes boiling) time points. Plant leaves were either added before the water was boiled (cold boiled) or after the water was boiled (hot boiled). The final concentrations of the aqueous plant extracts were 3.3 ng/mL (± 0.3 ng/mL) per sample. The antimicrobial properties of the plant extracts were tested using the well diffusion assay method against Staphylococcus aureus, Klebsiella pnuemoniae and methicillin resistant S. aureus and Bacillus cereus. Results Assay results from the almarBlue® and CYQUANT® assays indicated that extracts from both native plants at various time points (0, 24 and 48 hours) and concentrations (31.25 mg/mL, 62.5 mg/mL, and 125 mg/mL) were significantly higher (n=3, p=0.03 for Kc269, p=0.04 for Kc274, p=0.02 for Fib274, p=0.04 for Kc275 and p=0.001 for Kc276) compared with the untreated controls. Neither plant extract demonstrated cytotoxic effects. Significant antimicrobial activity against methicillin resistant Staphylococcus aureus (p=0.0009 for hot boiled plant A, n=2, p=0.034 for cold boiled plant A, n=2) K. pnuemoniae (p=0.0009 for hot boiled plant A, n=2, p=0.002 for cold boiled plant A, n=2) and B. cereus (p=0.0009 for hot boiled plant A, n=2, p=0.003 for cold boiled plant A, n=2) was observed at concentrations of 3.2 ng/mL for plant A and 3.4 ng/mL for plant B. Conclusion Both native plants contain bioactive compounds that increase cellular metabolic rates and total nucleic acid content. Neither plant was shown to be cytotoxic. Furthermore, both exhibited significant antimicrobial activity.
Resumo:
A bacterial consortium consisting of strains belongings to the genus Klebsiella and Rhodococcus quantitatively converts 1-, 3- and 7-substituted xanthines to their respective 8-oxo compounds.
Resumo:
The aims of this investigation were to enumerate coliforms in fresh mangoes, puree, cheeks, and cheeks-in-puree in order to determine the source of these organisms in the processed products, to determine methods for their control, and to identify coliforms isolated from cheeks-in-puree to determine whether they have any public health significance. Product from four processors was tested on two occasions. The retail packs of cheeks-in-puree having the highest coliform counts were those in which raw puree was added to the cheeks. Coliform counts in these samples ranged between 1.4 × 103 and 5.4 × 104 cfu/g. Pasteurisation reduced the coliform count of raw puree to < 5 cfu/g. Forty-seven percent of the 73 colonies, isolated as coliforms on the basis of their colony morphology on violet red bile agar, were identified as Klebsiella pneumoniae using the ATB 32E Identification System. Klebsiella strains were tested for growth at 10 °C, faecal coliform response, and fermentation of -melizitose, to differentiate the three phenotypically similar strains, K. pneumoniae, K. terrigena and K planticola. Results indicated that 41% of K. pneumoniae isolates gave reactions typical of K. pneumoniae. A further 44% of strains gave an atypical reaction pattern for these tests and were designated ‘psychrotrophic’ K. pneumoniae. Klebsiella pneumoniae counts of between 2.1 × 103 and 4.9 × 104 cfu/g were predicted to occur in the retail packs of mango cheeks-in-puree produced by the processors who constituted this product with raw puree. In view of the opportunistic pathogenic nature of K. pneumoniae, its presence in these products is considered undesirable and steps, such as pasteurisation of puree, should be taken in order to inactivate it
Resumo:
Equid herpesvirus 1 (EHV1) is a major disease of equids worldwide causing considerable losses to the horse industry. A variety of techniques, including PCR have been used to diagnose EHV1. Some of these PCRs were used in combination with other techniques such as restriction enzyme analysis (REA) or hybridisation, making them cumbersome for routine diagnostic testing and increasing the chances of cross-contamination. Furthermore, they involve the use of suspected carcinogens such as ethidium bromide and ultraviolet light. In this paper, we describe a real-time PCR, which uses minor groove-binding probe (MGB) technology for the diagnosis of EHV1. This technique does not require post-PCR manipulations thereby reducing the risk of cross-contamination. Most importantly, the technique is specific; it was able to differentiate EHV1 from the closely related member of the Alphaherpesvirinae, equid herpesvirus 4 (EHV4). It was not reactive with common opportunistic pathogens such as Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa and Enterobacter agglomerans often involved in abortion. Similarly, it did not react with equine pathogens such as Streptococcus equi, Streptococcus equisimilis, Streptococcus zooepidemicus, Taylorella equigenitalis and Rhodococcus equi, which also cause abortion. The results obtained with this technique agreed with results from published PCR methods. The assay was sensitive enough to detect EHV1 sequences in paraffin-embedded tissues and clinical samples. When compared to virus isolation, the test was more sensitive. This test will be useful for the routine diagnosis of EHV1 based on its specificity, sensitivity, ease of performance and rapidity.
Resumo:
Mastitis is one of the most economically significant diseases for the dairy industry for backyard farmers in developing countries and high producing herds worldwide. Two of the major factors impeding reduction in the incidence of this disease is [a] the lack of availability of an effective vaccine capable of protecting against multiple etiological agents and [b] propensity of some of the etiological agents to develop persistent antibiotic resistance in biofilms. This is further complicated by the continuing revolving shift in the predominant etiological agents of mastitis, depending upon a multitude of factors such as variability in hygienic practices on farms, easy access leading to overuse of appropriate or inappropriate antibiotics at suboptimal concentrations, particularly in developing countries, and lack of compliance with the recommended treatment schedules. Regardless, Staphylococcus aureus and Streptococcus uberis followed by Escherichia coli, Streptococcus agalactiae has become the predominant etiological agents of bovine mastitis followed Streptococcus agalactiae, Streptococcus dysagalactiae, Klebsiella pneumonia and the newly emerging Mycoplasma bovis. Current approaches being pursued to reduce the negative economic impact of this disease are through early diagnosis of infection, immediate treatment with an antibiotic found to either inhibit or kill the pathogen(s) in vitro using planktonic cultures and the use of the currently marketed vaccines regardless of their demonstrated effectiveness. Given the limitations of breeding programs, including genetic selection to improve resistance against infectious diseases including mastitis, it is imperative to have the availability of an effective broad-spectrum, preferably cross-protective, vaccine capable of protecting against bovine mastitis for reduction in the incidence of bovine mastitis, as well as interrupting the potential cross-species transmission to humans. This overview highlights the major etiological agents, factors affecting susceptibility to mastitis, and the current status of antibiotic-based therapies and prototype vaccine candidates or commercially available vaccines against bovine mastitis as potential preventative strategies. © 2013 Tiwari JG, et al.
Resumo:
Nitrogen-fixing bacterial isolate from the intercellular spaces of tomato root cortical cells was studied for the location of nif genes on the chromosomal or plasmid DNA. The bacterial isolate showed two plasmids of approximate molecular sizes of 220 and 120 kb. Klebsiella pneumoniae nif HDK probe hybridized with the chromosomal DNA and not with the plasmid DNA thereby showing that nif genes are localised on the chromosomal DNA.
Resumo:
This paper reports, the Laser Induced Breakdown Spectroscopy (LIBS) studies and structure elucidation of compounds isolated from the fruit extract of Moringa oleifera and also deals with their possible effects on some bacterial strains viz. Staphylococcus aureus, Klebsiella pneumonia, Escherichia coli and Pseudomonas aeruginosa. The extract was found to be active against all four microorganisms used. Extent of inhibitory effect of extract was assessed at different concentrations of 25, 50, 75 mg/ml by measuring diameter of inhibition zone (DIZ). Our results clearly showed that the 75 mg/ml concentration of the extract had 14, 12 and 18 mm of the DIZ against Staphylococcus aureus, Klebsiella pneumonia and Pseudomonas aeruginosa and 14 mm with 50 mg/ml concentration against Escherichia coli. The results were compared with the standard antibiotic `ampicillin' of 1 mg/ml concentration. LIBS was recorded with high power pulsed laser beam from Nd: YAG Laser (Continuum Surelite III-10), focused on the surface of the material, which was in liquid form, to generate plasma on the surface of the sample. LIBS data clearly demonstrate the presence of trace elements, magnesium and iron, in high concentration in the extract. Whereas, from the phytochemical profile reveals the presence of two new compounds, S-ethyl-N-{4-[(alpha-L-rhamnosyloxy) benzyl]} thiocarbamate and 2-acetoxy {4-[(2',3',4'-tri-O-acetyl-alpha-L-rhamnosyloxy) benzyl]} acetonitrile as the major constituents. This study is the first report on synergetic effect of the phytoconstituents and certain set of elements present in their defined role in bacterial management against different bacterial strains.