865 resultados para King, Coretta Scott , 1927-2006, American
Resumo:
Hexangular indium nitride nanoflower pattern is observed from scanning electron microscopy and atomic force microscopy. The sample is grown on c-plane (0001) sapphire by metal organic chemical vapor deposition with intentional introduction of hydrogen gas. With the aid of hydrogen, a stable existence of metallic indium is achieved. This will induce the growth of InN nanoflowers via self-catalysis vapor-liquid-solid (VLS) process. It is found that the VLS process is modulated by the interface kinetics and thermodynamics among the sapphire substrate, indium, and InN, which leads to the special morphology of the authors' InN nanoflower pattern. (c) 2006 American Institute of Physics.
Resumo:
The authors present the observation of wide transmission dips in a microring channel drop filter by two-dimensional finite-difference time-domain simulation. The authors show that distributed mode coupling between the input waveguide and the resonator results in the oscillations of the coupling efficiency and the envelope of transmission spectra with wavelength. The critical coupling as the light just passing through the coupling region is important for optimizing related devices. If the width of the input waveguide is different from that of the ring resonator, the phenomenon can be greatly reduced. (c) 2006 American Institute of Physics.
Resumo:
Low temperature (10 K) strong anti-Stokes photoluminescence (ASPL) of ZnO microcrystal excited by low power cw 532 nm laser is reported here. Energy upconversion of 1.1 eV is obtained in our experiment with no conventional nonlinear effect. Through the study of the normal photoluminescence and temperature dependence of ASPL we conclude that the green band luminescence in ZnO is related to deep donor to valance band transition. Using the two-step two-photon absorption model, we provide a plausible mechanism leading to the ASPL phenomenon in our experiment. (c) 2006 American Institute of Physics.
Resumo:
Well-defined complex quantum ring structures formed by droplet epitaxy are demonstrated. By varying the temperature of the crystallizing Ga droplets and changing the As flux, GaAs/AlGaAs quantum single rings and concentric quantum double rings are fabricated, and double-ring complexes are observed. The growth mechanism of these quantum ring complexes is addressed. (c) 2006 American Institute of Physics.
Resumo:
Indium-tin-oxide (ITO)/n-GaN Schottky contacts were prepared by e-beam evaporation at 200 degrees C under various partial pressures of oxygen. X-ray photoemission spectroscopy and positron beam measurements were employed to obtain chemical and structural information of the deposited ITO films. The results indicated that the observed variation in the reverse leakage current of the Schottky contact and the optical transmittance of the ITO films were strongly dependent on the quality of the ITO film. The high concentration of point defects at the ITO-GaN interface is suggested to be responsible for the large observed leakage current of the ITO/n-GaN Schottky contacts. (c) 2006 American Institute of Physics.
Resumo:
We have investigated the temperature and pressure dependences of the copper-related green emission, which show fine structure at low temperature, from tetrapodlike ZnO microrods. The temperature dependence of the green emission energy follows the changes in the band gap from 10-200 K, but deviates from this behavior above 200 K. The pressure dependence of the copper-related green band (25 +/- 5 meV/GPa) is similar to that of the band gap of ZnO, and is larger than that reported previously for defect-related green emission in ZnO. (c) 2006 American Institute of Physics.
Resumo:
The Stark effect on excitons in a bilayer system is investigated theoretically within the framework of the effective-mass approximation. The calculations indicate that the energy of the excitons decreases as the value of the in-plane electric field F increases at a fixed value of the distance d between the layers. However, the energy of the excitons increases with d at a fixed value of F. In particular, it increases linearly at small values of d but increases as 1/d at large values. Therefore, it can be concluded that excitons in a bilayer system have a small binding energy equal to the absolute value of the excitonic energy at large d or small F. In addition, the radiative lifetime of heavy-hole excitons in this system is calculated and is found to be short at small values of both F and d. The radiative lifetime of heavy-hole excitons in a bilayer system can be increased by two orders by an in-plane electric field of 2 kV/cm when d is twice the excitonic Rydberg. (c) 2006 American Institute of Physics.
Resumo:
Using the Huang-Zhu model [K. Huang and B.-F. Zhu, Phys. Rev. B 38, 13377 (1988)] for the optical phonons and associated carrier-phonon interactions in semiconductor superlattices, the effects of longitudinal electric field on the energy-loss rates (ELRs) of hot carriers as well as on the hot-phonon effect (HPE) in GaAs/AlAs quantum wells (QWs) are studied systematically. Contributions of various bulklike and interface phonons to the hot-carrier relaxation are compared in detail, and comprehensively analyzed in relation to the intrasubband and intersubband scatterings for quantum cascade lasers. Due to the broken parity of the electron (hole) states in the electric field, the bulklike modes with antisymmetric potentials are allowed in the intrasubband relaxation processes, as well as the modes with symmetric potentials. As the interface phonon scattering is strong only in narrow wells, in which the electric field affects the electron (hole) states little, the ELRs of hot carriers through the interface phonon scattering are not sensitive to the electric field. The HPE on the hot-carrier relaxation process in the medium and wide wells is reduced by the electric field. The influence of the electric field on the hot-phonon effect in quantum cascade lasers is negligible. When the HPE is ignored, the ELRs of hot electrons in wide QWs are decreased noticeably by the electric field, but slightly increased by the field when considering the HPE. In contrast with the electrons, the ELRs of hot holes in wide wells are increased by the field, irrespective of the HPE. (c) 2006 American Institute of Physics.
Resumo:
Fascinating features of porous InP array-directed assembly of InAs nanostructures are presented. Strained InAs nanostructures are grown by molecular-beam epitaxy on electrochemical etched porous InP substrate. Identical porous substrate with different pore depths defines different growth modes. Shallow pores direct the formation of closely spaced InAs dots at the bottom. Deep pores lead to progressive covering of the internal surface of pores by epitaxial material followed by pore mouth shrinking. For any depth an obvious dot depletion feature occurs on top of the pore framework. This growth method presages a pathway to engineer quantum-dot molecules and other nanoelements for fancy physical phenomena. (c) 2006 American Institute of Physics.
Resumo:
The biaxial piezospectroscopic coefficient (i.e., the rate of spectral shift with stress) of the electrostimulated near-band-gap luminescence of gallium nitride (GaN) was determined as Pi=-25.8 +/- 0.2 meV/GPa. A controlled biaxial stress field was applied on a hexagonal GaN film, epitaxially grown on (0001) sapphire using a ball-on-ring biaxial bending jig, and the spectral shift of the electrostimulated near-band-gap was measured in situ in the scanning electron microscope. This calibration method can be useful to overcome the lack of a bulk crystal of relatively large size for more conventional uniaxial bending calibrations, which has so far hampered the precise determination of the piezospectroscopic coefficient of GaN. The main source of error involved with the present calibration method is represented by the selection of appropriate values for the elastic stiffness constants of both film and substrate. The ball-on-ring calibration method can be generally applied to directly determine the biaxial-stress dependence of selected cathodoluminescence bands of epilayer/substrate materials without requiring separation of the film from the substrate. (c) 2006 American Institute of Physics.
Resumo:
We investigate the effects of lightly Si doping on the minority carrier diffusion length in n-type GaN films by analyzing photovoltaic spectra and positron annihilation measurements. We find that the minority carrier diffusion length in undoped n-type GaN is much larger than in lightly Si-doped GaN. Positron annihilation analysis demonstrates that the concentration of Ga vacancies is much higher in lightly Si-doped GaN and suggests that the Ga vacancies instead of dislocations are responsible for the smaller minority carrier diffusion length in the investigated Si-doped GaN samples due to the effects of deep level defects. (c) 2006 American Institute of Physics.
Resumo:
We investigate the origin of yellow luminescence in n-type GaN. It is found that the relative intensity of yellow luminescence increases as the full width at half maximum of the x-ray diffraction rocking curve at the (102) plane increases. This indicates that the yellow luminescence is related to the edge dislocation density. In addition, the relative intensity of yellow luminescence is confirmed to increase with increasing Si doping for the high quality GaN we have obtained. We propose that the yellow luminescence is effectively enhanced by the transition from donor impurities such as Si to acceptors around the edge dislocations in n-type GaN. (c) 2006 American Institute of Physics.
Resumo:
High-quality InAsxSb1-x (0 < x <= 0.3) films are grown on GaAs substrates by liquid phase epitaxy and electrical and optical properties of the films are investigated, revealing that the films exhibit Hall mobilities higher than 2x10(4) cm(2) V-1 s(-1) and cutoff wavelengths longer than 10 mu m at room temperature (RT). Photoconductors are fabricated from the films, and notable photoresponses beyond 8 mu m are observed at RT. In particular, for an InAs0.3Sb0.7 film, a photoresponse of up to 13 mu m with a maximum responsivity of 0.26 V/W is obtained at RT. Hence, the InAsxSb1-x films demonstrate attractive properties suitable for room-temperature, long-wavelength infrared detectors. (c) 2006 American Institute of Physics.
Resumo:
Zinc-blende CrSb (zb-CrSb) layers with room-temperature ferromagnetism have been grown on (In,Ga)As buffer layers epitaxially prepared on (001) GaAs substrates by molecular-beam epitaxy. Compared with the typical thickness [2-3 ML (ML denotes monolayers)] of zb-CrSb grown directly on GaAs, the thickness of zb-CrSb grown on (In,Ga)As has been increased largely; the maximum can be up to similar to 9 ML. High-resolution cross sectional transmission electron microscopy images show that the zb-CrSb layer is combined with (In,Ga)As buffer layer without any dislocations at the interface. (C) 2006 American Institute of Physics.
Resumo:
Er-doped Si nanoclusters embedded in SiO2 (NCSO) films were prepared by radio frequency magnetron sputtering on either silicon or quartz substrates. A 1.16 mu m (1.08 eV) photoluminescence (PL) peak was observed from an Er-doped NCSO film deposited on a Si substrate. This 1.16 mu m peak is attributed to misfit dislocations at the NCSO/Si interface. The emission properties of the 1.16 mu m peak and its correlation with the Er3+ emission (1.54 mu m) have been studied in detail. The observed behavior suggests that the excitation mechanism of the 1.16 mu m PL is in a fashion similar to that shown for Er-doped Si nanoclusters embedded in a SiO2 matrix. (C) 2006 American Institute of Physics.