989 resultados para Keloid Scar
Resumo:
Burn injuries in the United States account for over one million hospital admissions per year, with treatment estimated at four billion dollars. Of severe burn patients, 30-90% will develop hypertrophic scars (HSc). Current burn therapies rely upon the use of bioengineered skin equivalents (BSEs), which assist in wound healing but do not prevent HSc. HSc contraction occurs of 6-18 months and results in the formation of a fixed, inelastic skin deformity, with 60% of cases occurring across a joint. HSc contraction is characterized by abnormally high presence of contractile myofibroblasts which normally apoptose at the completion of the proliferative phase of wound healing. Additionally, clinical observation suggests that the likelihood of HSc is increased in injuries with a prolonged immune response. Given the pathogenesis of HSc, we hypothesize that BSEs should be designed with two key anti-scarring characterizes: (1) 3D architecture and surface chemistry to mitigate the inflammatory microenvironment and decrease myofibroblast transition; and (2) using materials which persist in the wound bed throughout the remodeling phase of repair. We employed electrospinning and 3D printing to generate scaffolds with well-controlled degradation rate, surface coatings, and 3D architecture to explore our hypothesis through four aims.
In the first aim, we evaluate the impact of elastomeric, randomly-oriented biostable polyurethane (PU) scaffold on HSc-related outcomes. In unwounded skin, native collagen is arranged randomly, elastin fibers are abundant, and myofibroblasts are absent. Conversely, in scar contractures, collagen is arranged in linear arrays and elastin fibers are few, while myofibroblast density is high. Randomly oriented collagen fibers native to the uninjured dermis encourage random cell alignment through contact guidance and do not transmit as much force as aligned collagen fibers. However, the linear ECM serves as a system for mechanotransduction between cells in a feed-forward mechanism, which perpetuates ECM remodeling and myofibroblast contraction. The electrospinning process allowed us to create scaffolds with randomly-oriented fibers that promote random collagen deposition and decrease myofibroblast formation. Compared to an in vitro HSc contraction model, fibroblast-seeded PU scaffolds significantly decreased matrix and myofibroblast formation. In a murine HSc model, collagen coated PU (ccPU) scaffolds significantly reduced HSc contraction as compared to untreated control wounds and wounds treated with the clinical standard of care. The data from this study suggest that electrospun ccPU scaffolds meet the requirements to mitigate HSc contraction including: reduction of in vitro HSc related outcomes, diminished scar stiffness, and reduced scar contraction. While clinical dogma suggests treating severe burn patients with rapidly biodegrading skin equivalents, these data suggest that a more long-term scaffold may possess merit in reducing HSc.
In the second aim, we further investigate the impact of scaffold longevity on HSc contraction by studying a degradable, elastomeric, randomly oriented, electrospun micro-fibrous scaffold fabricated from the copolymer poly(l-lactide-co-ε-caprolactone) (PLCL). PLCL scaffolds displayed appropriate elastomeric and tensile characteristics for implantation beneath a human skin graft. In vitro analysis using normal human dermal fibroblasts (NHDF) demonstrated that PLCL scaffolds decreased myofibroblast formation as compared to an in vitro HSc contraction model. Using our murine HSc contraction model, we found that HSc contraction was significantly greater in animals treated with standard of care, Integra, as compared to those treated with collagen coated-PLCL (ccPLCL) scaffolds at d 56 following implantation. Finally, wounds treated with ccPLCL were significantly less stiff than control wounds at d 56 in vivo. Together, these data further solidify our hypothesis that scaffolds which persist throughout the remodeling phase of repair represent a clinically translatable method to prevent HSc contraction.
In the third aim, we attempt to optimize cell-scaffold interactions by employing an anti-inflammatory coating on electrospun PLCL scaffolds. The anti-inflammatory sub-epidermal glycosaminoglycan, hyaluronic acid (HA) was used as a coating material for PLCL scaffolds to encourage a regenerative healing phenotype. To minimize local inflammation, an anti-TNFα monoclonal antibody (mAB) was conjugated to the HA backbone prior to PLCL coating. ELISA analysis confirmed mAB activity following conjugation to HA (HA+mAB), and following adsorption of HA+mAB to the PLCL backbone [(HA+mAB)PLCL]. Alican blue staining demonstrated thorough HA coating of PLCL scaffolds using pressure-driven adsorption. In vitro studies demonstrated that treatment with (HA+mAB)PLCL prevented downstream inflammatory events in mouse macrophages treated with soluble TNFα. In vivo studies using our murine HSc contraction model suggested positive impact of HA coating, which was partiall impeded by the inclusion of the TNFα mAB. Further characterization of the inflammatory microenvironment of our murine model is required prior to conclusions regarding the potential for anti-TNFα therapeutics for HSc. Together, our data demonstrate the development of a complex anti-inflammatory coating for PLCL scaffolds, and the potential impact of altering the ECM coating material on HSc contraction.
In the fourth aim, we investigate how scaffold design, specifically pore dimensions, can influence myofibroblast interactions and subsequent formation of OB-cadherin positive adherens junctions in vitro. We collaborated with Wake Forest University to produce 3D printed (3DP) scaffolds with well-controlled pore sizes we hypothesized that decreasing pore size would mitigate intra-cellular communication via OB-cadherin-positive adherens junctions. PU was 3D printed via pressure extrusion in basket-weave design with feature diameter of ~70 µm and pore sizes of 50, 100, or 150 µm. Tensile elastic moduli of 3DP scaffolds were similar to Integra; however, flexural moduli of 3DP were significantly greater than Integra. 3DP scaffolds demonstrated ~50% porosity. 24 h and 5 d western blot data demonstrated significant increases in OB-cadherin expression in 100 µm pores relative to 50 µm pores, suggesting that pore size may play a role in regulating cell-cell communication. To analyze the impact of pore size in these scaffolds on scarring in vivo, scaffolds were implanted beneath skin graft in a murine HSc model. While flexural stiffness resulted in graft necrosis by d 14, cellular and blood vessel integration into scaffolds was evident, suggesting potential for this design if employed in a less stiff material. In this study, we demonstrate for the first time that pore size alone impacts OB-cadherin protein expression in vitro, suggesting that pore size may play a role on adherens junction formation affiliated with the fibroblast-to-myofibroblast transition. Overall, this work introduces a new bioengineered scaffold design to both study the mechanism behind HSc and prevent the clinical burden of this contractile disease.
Together, these studies inform the field of critical design parameters in scaffold design for the prevention of HSc contraction. We propose that scaffold 3D architectural design, surface chemistry, and longevity can be employed as key design parameters during the development of next generation, low-cost scaffolds to mitigate post-burn hypertrophic scar contraction. The lessening of post-burn scarring and scar contraction would improve clinical practice by reducing medical expenditures, increasing patient survival, and dramatically improving quality of life for millions of patients worldwide.
Resumo:
This study approaches Óscar Romero by attending to his intimate involvement in and concern for the problematic surrounding the reform of Salvadoran agriculture and the conflict over property and possession underlying it. In this study, I situate Romero in relation to the concentration of landholding and the production of landlessness in El Salvador over the course of the twentieth century, and I examine his participation in the longstanding societal and ecclesial debate about agrarian reform provoked by these realities. I try to show how close attention to agrarian reform and what was at stake in it can illumine not only the conflict that occasioned Romero’s martyrdom but the meaning of the martyrdom itself.
Understanding Romero’s involvement in the debate about agrarian reform requires sustained attention to how it takes its bearings from the line of thinking about property and possession for which Pope Leo XIII’s 1891 encyclical Rerum novarum stands as a new beginning. The enclyclical tradition developing out of Leo’s pontificate is commonly referred to as Catholic social doctrine or Catholic social teaching. Romero’s and the Church’s participation in the debate about agrarian reform in El Salvador is unintelligible apart from it.
What Romero and the encyclical tradition share, I argue, is an understanding of creation as a common gift, from which follows a distinctive construal of property and the demands of justice with respect to possessing it. On this view, property does not name, as it is often taken to mean, the enclosure of what is common for the exclusive use of its possessors—something to be held by them over and against others. Rather, property and everything related to its holding derive from the claim that creation is a gift given to human creatures in common. The acknowledgement of creation as a common gift gives rise to what I describe in this study as a politics of common use, of which agrarian reform is one expression.
In Romero’s El Salvador, those who took the truth of creation as common gift seriously—those who spoke out against or opposed the ubiquity of the concentration of land and who clamored for agrarian reform so that the landless and land-poor could have access to land to cultivate for subsistence—suffered greatly as a consequence. I argue that, among other things, their suffering shows how, under the conditions of sin and violence, those who work to ensure that others have access to what is theirs in justice often risk laying down their lives in charity. In other words, they witness to the way that God’s work to restore creation has a cruciform shape. Therefore, while the advocacy for agrarian reform begins with the understanding of creation as common gift, the testimony to this truth in word and in deed points to the telos of the gift and the common life in the crucified and risen Lord in which it participates
Resumo:
Methane (CH4) concentrations and CH4 stable carbon isotopic composition (d13CCH4) were investigated in the water column within Jaco Scar. It is one of several scars formed by massive slides resulting from the subduction of seamounts offshore Costa Rica, a process that can open up structural and stratigraphical pathways for migrating CH4. The release of large amounts of CH4 into the adjacent water column was discovered at the outcropping lowermost sedimentary sequence of the hanging wall in the northwest corner of Jaco Scar, where concentrations reached up to 1,500 nmol L-1. There CH4-rich fluids seeping from the sedimentary sequence stimulate both growth and activity of a dense chemosynthetic community. Additional point sources supplying CH4 at lower concentrations were identified in density layers above and below the main plume from light carbon isotope ratios. The injected CH4 is most likely a mixture of microbial and thermogenic CH4 as suggested by d13CCH4 values between -50 and -62 per mil Vienna Pee Dee Belemnite. This CH4 spreads along isopycnal surfaces throughout the whole area of the scar, and the concentrations decrease due to mixing with ocean water and microbial oxidation. The supply of CH4 appears to be persistent as repeatedly high CH4 concentrations were found within the scar over 6 years. The maximum CH4 concentration and average excess CH4 concentration at Jaco Scar indicate that CH4 seepage from scars might be as significant as seepage from other tectonic structures in the marine realm. Hence, taking into account the global abundance of scars, such structures might constitute a substantial, hitherto unconsidered contribution to natural CH4 sources at the seafloor.
Resumo:
Spinal cord injury (SCI) is a devastating neurological disorder that affects thousands of people each year. Although in recent decades significant progress has been made in relation to understanding the molecular and cellular events underlying the nervous damage, spinal cord injury is still a highly disabling condition for which there is no curative therapy. People affected by spinal cord injuries manifested dysfunction or loss, temporary or permanent, of motor, sensory and / or autonomic functions depending on the spinal lesion damaged. Currently, the incidence rate of this type of injury is approximately 15-40 cases per million people worldwide. At the origin of these lesions are: road accidents, falls, interpersonal violence and the practice of sports. In this work we placed the hypothesis that HA is one of the component of the scar tissue formed after a compressive SCI, that it is likely synthetised by the perilesional glial cells and that it might support the permeation of the glial scar during the late phase of SCI. Nowadays, much focus is drawn on the recovery of CNS function, made impossible after SCI due to the high content of sulfated proteoglycans in the extracellular matrix. Counterbalancing the ratio between these proteoglycans and hyaluronic acid could be one of the experimental therapy to re-permeate the glial scar tissue formed after SCI, making possible axonal regrowth and functional recovery. Therefore, we established a model of spinal cord compression in mice and studied the glial scar tissue, particularly through the characterization of the expression of enzymes related to the metabolism of HA and the subsequent concentration thereof at different distances of the lesion epicenter. Our results show that the lesion induced in mice shows results similar to those produced in human lesions, in terms of histologic similarities and behavioral results. but these animals demonstrate an impressive spontaneous reorganization mechanism of the spinal cord tissue that occurs after injury and allows for partial recovery of the functions of the CNS. As regards the study of the glial scar, changes were recorded at the level of mRNA expression of enzymes metabolizing HA i.e., after injury there was a decreased expression of HA synthases 1-2 (HAS 1-2) and an increase of the expression HAS3 synthase mRNA, as well as the enzymes responsible for the HA catabolism, HYAL 1-2. But the amount of HA measured through the ELISA test was found unchanged after injury, it is not possible to explain this fact only with the change of expression of enzymes. At two weeks and in response to SCI, we found synthesized HA by reactive astrocytes and probably by others like microglial cells as it was advanced by the HA/GFAP+ and HA/IBA1+ cells co-location.
Resumo:
Calcinosis cutis is a rare condition characterized by the deposition of insoluble calcium salts in the skin and subcutaneous tissue. Dystrophic calcinosis cutis appears as a result of local tissue damage or abnormalities, such as alterations in extra-cellular matrix proteins or subcutaneous tissue with normal calcium and phosphate serum levels. It has been rarely described as a late complication of burns. Latency periods of 15-54 years have been reported. We describe the case of a 57-year-old man with dystrophic calcinosis cutis in a burn scar, which developed 42 years after the skin injury. The condition was successfully treated with surgical excision.
Resumo:
Background: Recombinant human endostatin (Endostar) has been widely used to suppress angiogenesis in carcinoma patients. Hypertrophic scar (HS) tissue, much like a carcinoma, is often associated with angiogenesis. However, there have been few studies conducted on the effects of Endostar on HS or its mechanism. Objective: This paper investigated the effects Endostar on the HS of rabbit ears and studied the effects of Endostar on VEGF and TIMP-1 expression. Methods: Sixteen New Zealand white rabbits were used to establish HS models. Then, rabbit ears containing HS were randomly assigned to either the Endostar group or the control group. The changes of appearance and histology were evaluated using the naked eye, hematoxylin eosin staining, and a scar elevation index. The VEGF and TIMP-1 expressions were detected by immunohistochemical staining, RT-PCR, and western blot. Results: The thickness of the connective tissue in the Endostar group were thinner, the numbers of micro vessels and fibroblasts were fewer, and the collagen fibers were smoother. Moreover, the mRNA and protein expressions of VEGF and TIMP-1 in the Endostar group were significantly lower than those in the control group. Conclusion: The results suggested that Endostar reduced the formation of HS by down-regulation of VEGF and TIMP-1 expressions.
Resumo:
Following axotomy, the contact between motoneurons and muscle fibers is disrupted, triggering a retrograde reaction at the neuron cell body within the spinal cord. Together with chromatolysis, a hallmark of such response to injury is the elimination of presynaptic terminals apposing to the soma and proximal dendrites of the injured neuron. Excitatory inputs are preferentially eliminated, leaving the cells under an inhibitory influence during the repair process. This is particularly important to avoid glutamate excitotoxicity. Such shift from transmission to a regeneration state is also reflected by deep metabolic changes, seen by the regulation of several genes related to cell survival and axonal growth. It is unclear, however, how exactly synaptic stripping occurs, but there is substantial evidence that glial cells play an active role in this process. In one hand, immune molecules, such as the major histocompatibility complex (MHC) class I, members of the complement family and Toll-like receptors are actively involved in the elimination/reapposition of presynaptic boutons. On the other hand, plastic changes that involve sprouting might be negatively regulated by extracellular matrix proteins such as Nogo-A, MAG and scar-related chondroitin sulfate proteoglycans. Also, neurotrophins, stem cells, physical exercise and several drugs seem to improve synaptic stability, leading to functional recovery after lesion.
Resumo:
To assess the occurrence of severe maternal complications owing to postpartum hemorrhage (PPH) and its associated factors. A secondary analysis of data from a multicenter cross-sectional prospective surveillance study included 9555 cases of severe maternal morbidity at 27 centers in Brazil between July 2009 and June 2010. Complications of PPH, conditions of severity management, and sociodemographic and obstetric characteristics were assessed. Factors independently associated with severe maternal outcome (SMO) were identified using multiple regression analysis. Overall, 1192 (12.5%) of the 9555 women experienced complications owing to PPH (981 had potentially life-threatening conditions, 181 maternal near miss, and 30 had died). The SMO ratio was 2.6 per 1000 live births among women with PPH and 8.5 per 1000 live births among women with other complications. Women with PPH had a higher risk of blood transfusion and return to the operating theater than did those with complications from other causes. Maternal age, length of pregnancy, previous uterine scar, and cesarean delivery were the main factors associated with an increased risk of SMO secondary to PPH. PPH frequently leads to severe maternal morbidity. A surveillance system can identify the main causes of morbidity and could help to improve care, especially among women identified as being at high risk of PPH.
Resumo:
PURPOSE: To report a case of Nocardia asteroides scleritis in a patient without risk factors for infeccious scleritis. METHODS: A 38-year old woman was initially examined for pain, discharge, photophobia of 1 month duration in her right eye. Her medical and ophthalmological history were unremarkable. The results of laboratory tests were normal. Surgical debridement of necrotic tissue was performed and material was sent for biopsy and culture confirmed as Nocardia asteroides. Treatment consisted of amikacin eyedrops, and systemic trimethropim-sulfamethoxazole. The infection resolved leaving scleral thinning and a subconjunctival fibrovascular scar. Best corrected visual acuity two months after referral had improved to LE, 20/20. CONCLUSION: Prompt evaluation and treatment is essential for successful management of Nocardia asteroides infectious scleritis.
Resumo:
Estudo experimental em animais. A mitomicina C vem sendo usada como inibidor de fibroblastos, acarretando, com isso, diminuição do processo cicatricial em feridas cirúrgicas. OBJETIVO: Este trabalho visa avaliar o uso de Mitomicina C para diminuir o processo cicatricial, através de seu uso tópico com reforços posteriores injetáveis. MATERIAL E MÉTODOS: Foi usado um modelo de feridas em dorso de ratos, com retirada circular da pele e cicatrização por segunda intenção. Foram usados 18 ratos, divididos em três grupos: controle; com uso tópico; e com reforço de mitomicina C injetável, mensalmente e por 2 meses. Após 3 meses os animais foram sacrificados e as cicatrizes retiradas cirurgicamente e submetidas a estudo histológico. RESULTADOS: Notou-se sob vários critérios que a cicatrização com o uso tópico é menos intensa, mas ao se usar o reforço injetável os parâmetros voltam a ser comparados ao do grupo controle. DISCUSSÃO: Acreditamos que a administração injetável de mitomicina C nas cicatrizes, pela sua elevada característica tóxica, acarreta destruição tecidual e neoformação cicatricial. CONCLUSÕES: A mitomicina C diminui o processo cicatricial quando usada topicamente, mas acarreta aumento da cicatrização quando nestas feridas são feitos reforços injetáveis.
Resumo:
Various methods are currently used in order to predict shallow landslides within the catchment scale. Among them, physically based models present advantages associated with the physical description of processes by means of mathematical equations. The main objective of this research is the prediction of shallow landslides using TRIGRS model, in a pilot catchment located at Serra do Mar mountain range, Sao Paulo State, southeastern Brazil. Susceptibility scenarios have been simulated taking into account different mechanical and hydrological values. These scenarios were analysed based on a landslide scars map from the January 1985 event, upon which two indexes were applied: Scars Concentration (SC - ratio between the number of cells with scars, in each class, and the total number of cells with scars within the catchment) and Landslide Potential (LP - ratio between the number of cells with scars, in each class, and the total number of cells in that same class). The results showed a significant agreement between the simulated scenarios and the scar's map. In unstable areas (SF <= 1), the SC values exceeded 50% in all scenarios. Based on the results, the use of this model should be considered an important tool for shallow landslide prediction, especially in areas where mechanical and hydrological properties of the materials are not well known.
Resumo:
Background and Objective: Impaired cell metabolism and increased cell death in fibroblast cells are physiological features of chronic tendinopathy. Although several studies have shown that low-level laser therapy (LLLT) at certain parameters has a biostimulatory effect on fibroblast cells, it remains uncertain if LLLT effects depend on the physiological state. Study Design/Material and Methods: High-metabolic immortal cell culture and primary human keloid fibroblast cell culture were used in this study. Trypan blue exclusion and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test were used to determine cell viability and proliferation. Propidium iodide stain was used for cell-cycle analysis by flow cytometry. Laser irradiation was performed daily on three consecutive days with a GaAlAs 660-nm laser (mean output: 50 mW, spot size 2 mm(2), power density = 2.5 W/cm(2)) and a typical LLLT dose and a high LLLT dose (irradiation times: 60 or 420 s; fluences: 150 or 1050 J/cm(2); energy delivered: 3 or 21 J). Results: Primary fibroblast cell culture from human keloids irradiated with 3 J showed significant proliferation by the trypan blue exclusion test (p < 0.05), whereas the 3T3 cell culture showed no difference using this method. Propidium iodide staining flow cytometry data showed a significant decrease in the percentage of cells being in proliferative phases of the cell cycle (S/g(2)/M) when irradiated with 21 J in both cell types (hypodiploid cells increased). Conclusions: Our data support the hypothesis that the physiological state of the cells affects the LLLT results, and that high-metabolic rate and short-cell-cycle 3T3 cells are not responsive to LLLT. In conclusion, LLLT with a dose of 3 J reduced cell death significantly, but did not stimulate cell cycle. A LLLT dose of 21 J had negative effects on the cells, as it increased cell death and inhibited cell proliferation.
Resumo:
Background: The tubule-interstitial fibrosis is the hallmark of progressive renal disease and is strongly associated with inflammation of this compartment. Heme-oxygenase-1 (HO-1) is a cytoprotective molecule that has been shown to be beneficial in various models of renal injury. However, the role of HO-1 in reversing an established renal scar has not yet been addressed. Aim: We explored the ability of HO-1 to halt and reverse the establishment of fibrosis in an experimental model of chronic renal disease. Methods: Sprague-Dawley male rats were subjected to unilateral ureteral obstruction (UUO) and divided into two groups: non-treated and Hemin-treated. To study the prevention of fibrosis, animals were pre-treated with Hemin at days -2 and -1 prior to UUO. To investigate whether HO-1 could reverse established fibrosis, Hemin therapy was given at days 6 and 7 post-surgery. After 7 and/or 14 days, animals were sacrificed and blood, urine and kidney tissue samples were collected for analyses. Renal function was determined by assessing the serum creatinine, inulin clearance, proteinuria/creatininuria ratio and extent of albuminuria. Arterial blood pressure was measured and fibrosis was quantified by Picrosirius staining. Gene and protein expression of pro-inflammatory and pro-fibrotic molecules, as well as HO-1 were performed. Results: Pre-treatment with Hemin upregulated HO-1 expression and significantly reduced proteinuria, albuminuria, inflammation and pro-fibrotic protein and gene expressions in animals subjected to UUO. Interestingly, the delayed treatment with Hemin was also able to reduce renal dysfunction and to decrease the expression of pro-inflammatory molecules, all in association with significantly reduced levels of fibrosis-related molecules and collagen deposition. Finally, TGF-beta protein production was significantly lower in Hemin-treated animals. Conclusion: Treatment with Hemin was able both to prevent the progression of fibrosis and to reverse an established renal scar. Modulation of inflammation appears to be the major mechanism behind HO-1 cytoprotection.