888 resultados para Joueurs de tennis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been substantial work that examines financial management in professional sport which has assisted scholars and practitioners to better understand processes and policies to ensure teams and leagues are sustainable (Andreff & Staudohar, 2000; Howard & Crompton, 2004; Kraekel, 2007; Lewis, Sexton, & Lock, 2007; Li, Hofacre, & Mahony, 2001). However, there has been a paucity of scholarly research that examines financial management at the grass roots levels of sport, and how this integrates with national sport organisation strategic planning, with the exception of the recent work by Havaris and Danylchuk (2007). This study aims to add to this gap in knowledge by examining financial management at the club level of tennis in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The purpose of the study was to compare the exercise-induced changes in bone mass and geometry between boys and girls.

Methods: Eighty competitive tennis players (43 boys, 37 girls) aged 7–19 years participated. Pubertal status was self-assessed using Tanner stages (TS 1–5). The dominant and nondominant humeri were compared for DXA-derived bone mass (BMC) and MRI-derived bone geometry [total bone area (TA), medullary area (MA) and cortical bone area (CA)].

Results/Discussion: Exercise-induced side-to-side differences in BMC, TA and CA were significant from TS1 to 5 in boys and girls (p < 0.06). Pre-pubertal (TS1) girls and boys show similar side-to-side difference in BMC after adjustment for training volume (19% vs. 15%, ns). Similar findings were found forTA and CA. In contrast, during puberty (TS2-4) boys displayed greater side-to-side differences than girls for BMC (27% vs. 18%, p < 0.05), TA (13–15% vs. 8%, p < 0.05) and CA (32% vs. 20%, p < 0.01), even after adjustment for tennis history. Girls partly compensated for the lack of an exercise-induced increase in bone size by a reduction of the medullary cavity on the dominant side (−5.5 to −13%, p < 0.05). In post-puberty (TS 5 or postmenarche), the size of the medullary cavity remained smaller on the dominant side in girls (−5% to −9%, p = 0.1–0.05??) whereas no such reduction was observed in boys.

Conclusion: Regular exercise initiated before puberty and maintained throughout puberty leads to greater skeletal benefits in peri-pubertal boys than girls for bone mass and bone size, two of the major determinants of bone strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between muscle strength and bone mineral density illustrates the positive effect of mechanical loading on bone. But local and systemic factors may affect both muscle and bone tissues. This study investigated the effects of long-term tennis playing on the relationship between lean tissue mass and bone mineral content in the forearms, taking the body dimensions into account. Fifty-two tennis players (age 24.2 +/- 5.8 yrs, 16.2 +/- 6.1 yrs of practice) were recruited. Lean tissue mass (LTM), bone area, bone mineral content (BMC), and bone mineral density were measured at the forearms from a DXA whole-body scan. Grip strength was assessed with a dynamometer. A marked side-to-side difference (p < 0.0001) was found in favor of the dominant forearm in all parameters. Bone area and BMC correlated with grip strength on both sides (r = 0.81 - 0.84, p < 0.0001). The correlations were still significant after adjusting for whole-body BMC body height, or forearm length. This result reinforced the putative role of the muscles in the mechanical loading on bones. In addition, forearm BMC adjusted to LTM or grip strength was higher on the dominant side, suggesting that tennis playing exerts a direct effect on bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The benefit of impact-loading activity for bone strength depends on whether the additional bone mineral content (BMC) accrued at loaded sites is due to an increased bone size, volumetric bone mineral density (vBMD) or both. Using magnetic resonance imaging (MRI) and dual energy X-ray absorptiometry (DXA), the aim of this study was to characterize the geometric changes of the dominant radius in response to long-term tennis playing and to assess the influence of muscle forces on bone tissue by investigating the muscle–bone relationship. Twenty tennis players (10 men and 10 women, mean age: 23.1 ± 4.7 years, with 14.3 ± 3.4 years of playing) were recruited. The total bone volume, cortical volume, sub-cortical volume and muscle volume were measured at both distal radii by MRI. BMC was assessed by DXA and was divided by the total bone volume to derive vBMD. Grip strength was evaluated with a dynamometer. Significant side-to-side differences (P < 0.0001) were found in muscle volume (+9.7%), grip strength (+13.3%), BMC (+13.5%), total bone volume (+10.3%) and sub-cortical volume (+20.6%), but not in cortical volume (+2.6%, ns). The asymmetry in total bone volume explained 75% of the variance in BMC asymmetry (P < 0.0001). vBMD was slightly higher on the dominant side (+3.3%, P < 0.05). Grip strength and muscle volume correlated with all bone variables (except vBMD) on both sides (r = 0.48–0.86, P < 0.05–0.0001) but the asymmetries in muscle parameters did not correlate with those in bone parameters. After adjustment for muscle volume or grip strength, BMC was still greater on the dominant side. This study showed that the greater BMC induced by long-term tennis playing at the dominant radius was associated to a marked increase in bone size and a slight improvement in volumetric BMD, thereby improving bone strength. In addition to the muscle contractions, other mechanical stimuli seemed to exert a direct effect on bone tissue, contributing to the specific bone response to tennis playing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone responds to impact-loading activity by increasing its size and/or density. The aim of this study was to compare the magnitude and modality of the bone response between cortical and trabecular bone in the forearms of tennis players. Bone area, bone mineral content (BMC), and bone mineral density (BMD) of the ulna and radius were measured by dual-energy X-ray absorptiometry (DXA) in 57 players (24.5 ± 5.7 yr old), at three sites: the ultradistal region (50% trabecular bone), the mid-distal regions, and third-distal (mainly cortical bone). At the ultradistal radius, the side-to-side difference in BMD was larger than in bone area (8.4 ± 5.2% and 4.9 ± 4.0%, respectively, p < 0.01). In the cortical sites, the asymmetry was lower (p < 0.01) in BMD than in bone area (mid-distal radius: 4.0 ± 4.3% vs 11.7 ± 6.8%; third-distal radius: 5.0 ± 4.8% vs 8.4 ± 6.2%). The asymmetry in bone area explained 33% of the variance of the asymmetry in BMC at the ultradistal radius, 66% at the mid-distal radius, and 53% at the third-distal radius. The ulna displayed similar results. Cortical and trabecular bone seem to respond differently to mechanical loading. The first one mainly increases its size, whereas the second one preferentially increases its density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical loading during growth magnifies the normal increase in bone diameter occurring in long bone shafts, but the response to loading in long bone ends remains unclear. The aim of the study was to investigate the effects of tennis playing during growth at the distal radius, comparing the bone response at trabecular and cortical skeletal sites. The influence of training duration was examined by studying bone response in short-term (children) and long-term (young adults) perspectives. Bone area, bone mineral content (BMC), and bone mineral density (BMD) of the radius were measured by DXA in 28 young (11.6 ± 1.4 years old) and 47 adult tennis players (22.3 ± 2.7 years old), and 70 age-matched controls (12 children, 58 adults) at three sites: the ultradistal region (trabecular), the mid-distal region, and the third-distal region (cortical). At the ultradistal radius, young and adult tennis players displayed similar side-to-side differences, the asymmetry in BMC reaching 16.3% and 13.8%, respectively (P < 0.0001). At the mid- and third-distal radius, the asymmetry was much greater in adults than in children (P < 0.0001) for all the bone parameters (mid-distal radius, +6.6% versus +15.6%; third-distal radius, +6.9% versus +13.3%, for BMC). Epiphyseal bone enduring longitudinal growth showed a great capacity to respond to mechanical loading in children. Prolonging tennis playing into adulthood was associated with further increase in bone mineralization at diaphyseal skeletal sites. These findings illustrate the benefits of practicing impact-loading sports during growth and maintaining physical activity into adulthood to enhance bone mass accrual and prevent fractures later in life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed at demonstrating the asymmetry in volume between the dominant and nondominant upper limbs in tennis players, controlled for maturity status. Upper limb volumes on both sides were calculated in 72 tennis players and 84 control subjects, using the truncated cone method. The participants’ maturity status was determined using the predicted age at peak height velocity (PHV). The results showed significant larger side-to-side asymmetry in volume in tennis groups than
in control groups. These findings suggested that, even before PHV, specific-sport adaptations occurred in the dominant upper limb in tennis players.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pre- and early puberty seem to be the most opportune times for exercise to  improve bone strength in girls, but few studies have addressed this issue in boys. This study investigated the site-, surface-, and maturity-specific exercise-induced changes in bone mass and geometry in young boys. The osteogenic effects of loading were analyzed by comparing the playing and nonplaying humeri of 43 male pre-, peri-, and postpubertal competitive tennis players 10-19 yr of age. Total bone area, medullary area, and cortical area were determined at the mid (40-50%) and distal humerus (60-70%) of both arms using MRI. Humeral bone mass (BMC) was derived from a whole body DXA scan. In prepubertal boys, BMC was 17% greater in the playing compared with nonplaying arm (p < 0.001), which was accompanied by a 12-21% greater cortical area, because of greater periosteal expansion than medullary expansion at the midhumerus and periosteal expansion associated with medullary contraction at the distal humerus. Compared with prepuberty, the side-to-side differences in BMC (27%) and cortical area (20-33%) were greater in peripuberty (p < 0.01). No differences were found between peri- and postpuberty despite longer playing history in the postpubertal players.The osteogenic response to loading was greater in peri- compared with prepubertal boys, which is in contrast with our previous findings in girls and may be caused by differences in training history. This suggests that the window of opportunity to improve bone mass and size through exercise may be longer in boys than in girls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research on contextual interference theory in controlled laboratory situations consistently illustrated that random practice was superior to blocked practice when learning motor skills. However, when considered in relation to physical education class settings the findings of the contextual interference experiments were not as uniform. Furthermore, the results of the contextual interference research were ambiguous when an open skill was used as the experimental task, with no definite trend evident. Random practice was found more effective for learning (del Rey, 1989) whereas French, Rink and Werner (1990) demonstrated blocked practice to be superior. In the present study, the influence of high and low contextual interference as practice schedules was investigated within an applied sports setting using an open sports skill as the experimental task. Two groups of boys and girls, 8-9 and 10-12 years of age, were taught a forehand tennis groundstroke using both their preferred and non-preferred hands over a ten week coaching and practice period. The findings showed that male subjects were significantly better at the experimental task than female subjects at the pre-test stage only. The result also demonstrated that the 10-12 year old subjects were significantly better than the 8-9 year olds at the task with the exception of the preferred hand at the post and retention test stage. The contextual interference effect was demonstrated in the retention phase on the preferred hand of the 10-12 year old subjects where the random practice group was significantly better than the blocked practice group in an applied sports setting. These findings were discussed in relation to the role of cognition in the learning of these motor skills and the influence of the subjects related background experiences.