964 resultados para Jet and flash imprint lithography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advertising matter: p. 328-348.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imprint varies: Huron, S.D., <1950>-1954.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the development of an ultraviolet curable hydrogel, based on combinations of poly(ethylene glycol) dimethacrylate (PEGMA), acrylic acid (AA) and N-Isopropylacrylamide (NIPPAm) for imprint lithography processes. The hydrogel was successfully imprinted to form dynamic microlens arrays. The response rate of the microlenses by volume change to water absorption was studied optically showing tunable focalisation of the light. Important optical refractive index change was measured between the dry and wet state of the microlenses. Our work suggests the use of this newly developed printable hydrogel for various imprinted components for sensing and imaging systems. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc oxide and graphene nanostructures are important technological materials because of their unique properties and potential applications in future generation of electronic and sensing devices. This dissertation investigates a brief account of the strategies to grow zinc oxide nanostructures (thin film and nanowire) and graphene, and their applications as enhanced field effect transistors, chemical sensors and transparent flexible electrodes. Nanostructured zinc oxide (ZnO) and low-gallium doped zinc oxide (GZO) thin films were synthesized by a magnetron sputtering process. Zinc oxide nanowires (ZNWs) were grown by a chemical vapor deposition method. Field effect transistors (FETs) of ZnO and GZO thin films and ZNWs were fabricated by standard photo and electron beam lithography processes. Electrical characteristics of these devices were investigated by nondestructive surface cleaning, ultraviolet irradiation treatment at high temperature and under vacuum. GZO thin film transistors showed a mobility of ∼5.7 cm2/V·s at low operation voltage of <5 V and a low turn-on voltage of ∼0.5 V with a sub threshold swing of ∼85 mV/decade. Bottom gated FET fabricated from ZNWs exhibit a very high on-to-off ratio (∼106) and mobility (∼28 cm2/V·s). A bottom gated FET showed large hysteresis of ∼5.0 to 8.0 V which was significantly reduced to ∼1.0 V by the surface treatment process. The results demonstrate charge transport in ZnO nanostructures strongly depends on its surface environmental conditions and can be explained by formation of depletion layer at the surface by various surface states. A nitric oxide (NO) gas sensor using single ZNW, functionalized with Cr nanoparticles was developed. The sensor exhibited average sensitivity of ∼46% and a minimum detection limit of ∼1.5 ppm for NO gas. The sensor also is selective towards NO gas as demonstrated by a cross sensitivity test with N2, CO and CO2 gases. Graphene film on copper foil was synthesized by chemical vapor deposition method. A hot press lamination process was developed for transferring graphene film to flexible polymer substrate. The graphene/polymer film exhibited a high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ∼88.80% light transmittance and ∼1.1742Ω/sq k sheet resistance. The application of a graphene/polymer film as a flexible and transparent electrode for field emission displays was demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wird die Herstellung von miniaturisierten NIR-Spektrometern auf Basis von Fabry-Pérot (FP) Filter Arrays behandelt. Bisher ist die kostengünstige Strukturierung von homogenen und vertikal erweiterten Kavitäten für NIR FP-Filter mittels Nanoimprint Technologie noch nicht verfügbar, weil die Qualität der Schichten des Prägematerials unzureichend ist und die geringe Mobilität der Prägematerialien nicht ausreicht, um die vertikal erweiterten Kavitäten zu füllen. Diese Arbeit konzentriert sich auf die Reduzierung des technischen Aufwands zur Herstellung von homogenen und vertikal erweiterten Kavitäten. Zur Strukturierung der Kavitäten wird ein großflächiger substratkonformer UV-Nanoimprint Prozess (SCIL - Substrate Conformal Imprint Lithoghaphy) verwendet, der auf einem Hybridstempel basiert und Vorteile von harten und weichen Stempeln vereint. Um die genannten Limitierungen zu beseitigen, werden alternative Designs der Kavitäten untersucht und ein neues Prägematerial eingesetzt. Drei Designlösungen zur Herstellung von homogenen und erweiterten Kavitäten werden untersucht und verglichen: (i) Das Aufbringen des Prägematerials mittel mehrfacher Rotationsbeschichtung, um eine höhere Schichtdicke des Prägematerials vor dem Prägeprozess zu erzeugen, (ii) die Verwendung einer hybriden Kavität bestehend aus einer strukturierten Schicht des Prägematerials eingebettet zwischen zwei Siliziumoxidschichten, um die Schichtdicke der organischen Kavität zu erweitern und (iii) die Optimierung des Prägeprozesses durch Verwendung eines neuen Prägematerials. Die mit diesen drei Ansätzen hergestellten FP-Filter Arrays zeigen, hohe Transmissionen (beste Transmission > 90%) und kleine Linienbreiten (Halbwertsbreiten <5 nm).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis develops and tests various transient and steady-state computational models such as direct numerical simulation (DNS), large eddy simulation (LES), filtered unsteady Reynolds-averaged Navier-Stokes (URANS) and steady Reynolds-averaged Navier-Stokes (RANS) with and without magnetic field to investigate turbulent flows in canonical as well as in the nozzle and mold geometries of the continuous casting process. The direct numerical simulations are first performed in channel, square and 2:1 aspect rectangular ducts to investigate the effect of magnetic field on turbulent flows. The rectangular duct is a more practical geometry for continuous casting nozzle and mold and has the option of applying magnetic field either perpendicular to broader side or shorter side. This work forms the part of a graphic processing unit (GPU) based CFD code (CU-FLOW) development for magnetohydrodynamic (MHD) turbulent flows. The DNS results revealed interesting effects of the magnetic field and its orientation on primary, secondary flows (instantaneous and mean), Reynolds stresses, turbulent kinetic energy (TKE) budgets, momentum budgets and frictional losses, besides providing DNS database for two-wall bounded square and rectangular duct MHD turbulent flows. Further, the low- and high-Reynolds number RANS models (k-ε and Reynolds stress models) are developed and tested with DNS databases for channel and square duct flows with and without magnetic field. The MHD sink terms in k- and ε-equations are implemented as proposed by Kenjereš and Hanjalić using a user defined function (UDF) in FLUENT. This work revealed varying accuracies of different RANS models at different levels. This work is useful for industry to understand the accuracies of these models, including continuous casting. After realizing the accuracy and computational cost of RANS models, the steady-state k-ε model is then combined with the particle image velocimetry (PIV) and impeller probe velocity measurements in a 1/3rd scale water model to study the flow quality coming out of the well- and mountain-bottom nozzles and the effect of stopper-rod misalignment on fluid flow. The mountain-bottom nozzle was found more prone to the longtime asymmetries and higher surface velocities. The left misalignment of stopper gave higher surface velocity on the right leading to significantly large number of vortices forming behind the nozzle on the left. Later, the transient and steady-state models such as LES, filtered URANS and steady RANS models are combined with ultrasonic Doppler velocimetry (UDV) measurements in a GaInSn model of typical continuous casting process. LES-CU-LOW is the fastest and the most accurate model owing to much finer mesh and a smaller timestep. This work provided a good understanding on the performance of these models. The behavior of instantaneous flows, Reynolds stresses and proper orthogonal decomposition (POD) analysis quantified the nozzle bottom swirl and its importance on the turbulent flow in the mold. Afterwards, the aforementioned work in GaInSn model is extended with electromagnetic braking (EMBr) to help optimize a ruler-type brake and its location for the continuous casting process. The magnetic field suppressed turbulence and promoted vortical structures with their axis aligned with the magnetic field suggesting tendency towards 2-d turbulence. The stronger magnetic field at the nozzle well and around the jet region created large scale and lower frequency flow behavior by suppressing nozzle bottom swirl and its front-back alternation. Based on this work, it is advised to avoid stronger magnetic field around jet and nozzle bottom to get more stable and less defect prone flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The t/t production cross section is measured with the CMS detector in the all-jets channel in $pp$ collisions at the centre-of-mass energy of 13 TeV. The analysis is based on the study of t/t events in the boosted topology, namely events in which decay products of the quark top have a high Lorentz boost and are thus reconstructed in the detector as a single, wide jet. The data sample used in this analysis corresponds to an integrated luminosity of 2.53 fb-1. The inclusive cross section is found to be sigma(t/t) = 727 +- 46 (stat.) +115-112 (sys.) +- 20~(lumi.) pb, a value which is consistent with the theoretical predictions. The differential, detector-level cross section is measured as a function of the transverse momentum of the leading jet and compared to the QCD theoretical predictions. Finally, the differential, parton-level cross section is reported, measured as a function of the transverse momentum of the leading parton, extrapolated to the full phase space and compared to the QCD predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, polymerization processes assisted by atmospheric pressure plasma jets (APPJs) have received increasing attention in numerous industrially relevant sectors since they allow to coat complex 3D substrates without requiring expensive vacuum systems. Therefore, advancing the comprehension of these processes has become a high priority topic of research. This PhD dissertation is focused on the study and the implementation of control strategies for a polymerization process assisted by an atmospheric pressure single electrode plasma jet. In the first section, a study of the validity of the Yasuda parameter (W/FM) as controlling parameter in the polymerization process assisted by the plasma jet and an aerosolized fluorinated silane precursor is proposed. The surface characterization of coatings deposited under different W/FM values reveals the presence of two very well-known deposition domains, thus suggesting the validity of W/FM as controlling parameter. In addition, the key role of the Yasuda parameter in the process is further demonstrated since coatings deposited under the same W/FM exhibit similar properties, regardless of how W/FM is obtained. In the second section, the development of a methodology for measuring the energy of reactions in the polymerization process assisted by the plasma jet and vaporized hexamethyldisiloxane is presented. The values of energy per precursor molecule are calculated through the identification and resolution of a proper equivalent electrical circuit. To validate the methodology, these energy values are correlated to the bond energies in the precursor molecule and to the properties of deposited thin films. It is shown that the precursor fragmentation in the discharge and the coating characteristics can be successfully explained according to the obtained values of energy per molecule. Through a detailed discussion of the limits and the potentialities of both the control strategies, this dissertation provides useful insights into the control of polymerization processes assisted by APPJs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identity of the potassium channel underlying the slow, apamin-insensitive component of the afterhyperpolarization current (sl(AHP)) remains unknown. We studied sl(AHP) in CA1 pyramidal neurons using simultaneous whole-cell recording, calcium fluorescence imaging, and flash photolysis of caged compounds. Intracellular calcium concentration ([Ca2+](i)) peaked earlier and decayed more rapidly than sl(AHP). Loading cells with low concentrations of the calcium chelator EGTA slowed the activation and decay of sl(AHP). In the presence of EGTA, intracellular calcium decayed with two time constants. When [Ca2+](i) was increased rapidly after photolysis of DM-Nitrophen, both apamin-sensitive and apamin-insensitive outward currents were activated. The apamin-sensitive current activated rapidly (<20 msec), whereas the apamin-insensitive current activated more slowly (180 msec). The apamin-insensitive current was reduced by application of serotonin and carbachol, confirming that it was caused by sl(AHP) channels. When [Ca2+](i) was decreased rapidly via photolysis of diazo-2, the decay of sl(AHP) was similar to control (1.7 sec). All results could be reproduced by a model potassium channel gated by calcium, suggesting that the channels underlying sl(AHP) have intrinsically slow kinetics because of their high affinity for calcium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Vulcanologia e Riscos Geológicos, 25 de Novembro de 2013, Universidade dos Açores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La producció de biodièsel a partir d'olis de cuina utilitzats, amb l'objectiu de transformar un residu en un producte amb valor comercial i ambiental, és més net que els combustibles fòssils i contribueix a disminuir el gran consum de petroli que estem fent. En una primera part teòrica s’ha realitzat un treball de recerca d' informació del biodièsel per saber si és un bon combustible i si podria ser un possible substitut dels combustibles fòssils. En quant a la part pràctica l'objectiu principal ha estat fabricar el biodièsel . Les matèries primeres són oli de gira-sol i oli de cuina utilitzat, per tal de comparar les seves qualitats. S’ha arribat a la conclusió que presenten característiques molt semblants. Després de fer les anàlisis físico-químics de qualitat vam fer una mescla dels dos biodièsels fabricats, i el vam provar en un motor Dièsel per comprovar si funciona correctament i fer una comparació dels gasos emesos pel nostre combustible amb els emesos pel gasoil comercial. El resultat va ser molt positiu ja que el motor va funcionar correctament, i la comparació de gasos va sortir tal i com esperàvem ja que les quantitats de diòxid i monòxid de carboni emeses eren menors que en el gasoil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context.It has been proposed that the origin of the very high-energy photons emitted from high-mass X-ray binaries with jet-like features, so-called microquasars (MQs), is related to hadronic interactions between relativistic protons in the jet and cold protons of the stellar wind. Leptonic secondary emission should be calculated in a complete hadronic model that includes the effects of pairs from charged pion decays inside the jets and the emission from pairs generated by gamma-ray absorption in the photosphere of the system. Aims.We aim at predicting the broadband spectrum from a general hadronic microquasar model, taking into account the emission from secondaries created by charged pion decay inside the jet. Methods.The particle energy distribution for secondary leptons injected along the jets is consistently derived taking the energy losses into account. The spectral energy distribution resulting from these leptons is calculated after assuming different values of the magnetic field inside the jets. We also compute the spectrum of the gamma-rays produced by neutral pion-decay and processed by electromagnetic cascades under the stellar photon field. Results.We show that the secondary emission can dominate the spectral energy distribution at low energies (~1 MeV). At high energies, the production spectrum can be significantly distorted by the effect of electromagnetic cascades. These effects are phase-dependent, and some variability modulated by the orbital period is predicted.