960 resultados para Irrigation water
Resumo:
Scarcity of freshwater due to recurrent drought threatens the sustainable crop production in semi-arid regions of Ethiopia. Deficit irrigation is thought to be one of the promising strategies to increase water use efficiency (WUE) under scarce water resources. A study was carried out to investigate the effect of alternate furrow irrigation (AFI), deficit irrigation (DI) and full irrigation (FI) on marketable fruit yield, WUE and physio-chemical quality of four fresh-market tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2) in 2013 and 2014. The results showed that marketable yield, numbers of fruits per plant and fruit size were not significantly affected by AFI and DI irrigations. WUE under AFI and DI increased by 36.7% and 26.1%, respectively with close to 30% irrigation water savings achieved. A different response of cultivars to irrigation treatments was found for marketable yield, number of fruits and fruit size, WUE, total soluble solids (TSS) of the fruit juice, titratable acids (TA) and skin thickness. Cochoro and Fetan performed well under both deficit irrigation treatments exhibited by bigger fruit size which led to higher WUE. ARP Tomato d2 showed good yields under well-watered conditions. Chali had consistently lower marketable fruit yield and WUE. TSS and TA tended to increase under deficit irrigation; however, the overall variations were more explained by irrigation treatments than by cultivars. It was shown that AFI is a suitable deficit irrigation practice to increase fresh yield, WUE and quality of tomato in areas with low water availability. However, AFI requires suitable cultivars in order to exploit its water saving potential.
Resumo:
tWater use control methods and water resources planning are of high priority. In irrigated agriculture, theright way to save water is to increase water use efficiency through better management. The present workvalidates procedures and methodologies using remote sensing to determine the water availability in thesoil at each moment, giving the opportunity for the application of the water depth strictly necessaryto optimise crop growth (optimum irrigation timing and irrigation amount). The analysis is applied tothe Irrigation District of Divor, Évora, using 7 experimental plots, which are areas irrigated by centre-pivot systems, cultivated to maize. Data were determined from images of the cultivated surface obtainedby satellite and integrated with atmosphere and crop parameters to calculate biophysical indicatorsand indices of water stress in the vegetation—Normalized Difference Vegetation Index (NDVI), Kc, andKcb. Therefore, evapotranspiration (ETc) was estimated and used to calculate crop water requirement,together with the opportunity and the amount of irrigation water to allocate. Although remote sensingdata available from satellite imagery presented some practical constraints, the study could contribute tothe validation of a new methodology that can be used for irrigation management of a large irrigated area,easier and at lower costs than the traditional FAO recommended crop coefficients method. The remotesensing based methodology can also contribute to significant saves of irrigation water.
Resumo:
As a way to reduce water losses in furrow irrigation systems, used in fresh market tomato production, farmers are improperly distributing water into the field using plastic hose. The objective of this work was to study the suitability of using quick coupler sprinkler as hose connectors for water distribution in tomato plantation. The first step of the study was to assess the current hose field operation for tomato growers. Subsequently, four models of quick couplers sprinklers available in the market were tested in laboratory to determine the coefficient of resistance, the equivalent tube length, the head loss curve and the linking efficiency. As result, a structural design for hose connectors was presented using the model of coupling with the best hydraulic performance. Additionally, some technical recommendations on its use in irrigation water distribution are highlighted. Despite the requirement for additional field trials, the proposed system has potential to optimize the water use efficiency, to improve workers ergonomic conditions, and ensure good profitability to the producer.
Resumo:
The present work had as objective uses a model of lineal programming algorithm to optimize the use of the water in the District of Irrigation Baixo Acarau-CE proposing the best combination of crop types and areas established of 8,0 ha. The model aim maximize the net benefit of small farmer, incorporating the constraints in water and land availability, and constraints on the market. Considering crop types and the constraints, the study lead to the following conclusions: 1. The water availability in the District was not a limiting resources, while all available land was assigned in six of the seven cultivation plans analyzed. Furthermore, water availability was a restrictive factor as compared with land only when its availability was made to reduce to 60% of its actual value; 2. The combination of soursop and melon plants was the one that presented the largest net benefit, corresponding to R$ 5,250.00/ha/yr. The planting area for each crop made up to 50% of the area of the plot; 3. The plan that suggests the substitution of the cultivation of the soursop, since a decrease in annual net revenue of 5.87%. However, the plan that contemplates the simultaneous substitution of both soursop and melon produced the lowest liquid revenue, with reduction of 33.8%.
Resumo:
This study aimed to evaluate the viability of using treated residuary water from the Biological Wastewater Treatment Plant of Ribeiro Preto to grow vegetables, through the characterization and quantification of parasites, coliforms, and heavy metals. Three equal cultivation areas were prepared. The first was irrigated with treated/chlorinated (0.2 mg L(-1)) wastewater, the second one with treated wastewater without chlorination, and the third site with potable water, which was the control group. The presence of Hymenolepis nana, Enterobius vermicularis, nematode larvae, and Entamoeba coli was verified in lettuce (Lactuca sativa) samples. Although nematode larvae were observed in rocket salad (Eruca sativa L.), no significant differences were found between the number of parasites and type of irrigation water used. No significant differences were found between the number of fecal coliforms in vegetables and the different types of irrigation. However, the vegetables irrigated with treated effluent without chlorination showed higher levels of fecal coliforms. The risk of pathogens is reduced with bleach addition to the treated effluent at 0.2 mg/L. Concentration of heavy metals in vegetables does not mean significant risks to human health, according with the parameters recommended by the World Health Organization.
Resumo:
Carbon (C) and nitrogen (N) dynamics in agro-systems can be altered as a consequence of treated sewage effluent (TSE) irrigation. The present study evaluated the effects of TSE irrigation over 16 months on N concentrations in sugarcane (leaves, stalks and juice), total soil carbon (TC), total soil nitrogen (TN), NO(3)(-)-N in soil and nitrate (NO(3)(-)) and dissolved organic carbon (DOC) in soil solution. The soil was classified as an Oxisol and samplings were carried out during the first productive crop cycle, from February 2005 (before planting) to September 2006 (after sugarcane harvest and 16 months of TSE irrigation). The experiment was arranged in a complete block design with five treatments and four replicates. Irrigated plots received 50% of the recommended mineral N fertilization and 100% (T100), 125% (T125), 150% (T150) and 200% (T200) of crop water demand. No mineral N and irrigation were applied to the control plots. TSE irrigation enhanced sugarcane yield but resulted in total-N inputs(804-1622 kg N ha(-1)) greater than exported N (463-597 kg N ha(-1)). Hence, throughout the irrigation period, high NO(3)(-) concentrations (up to 388 mg L(-1) at T200) and DOC (up to 142 mg L(-1) at T100) were measured in soil solution below the root zone, indicating the potential of groundwater contamination. TSE irrigation did not change soil TC and TN. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effects of irrigation with reclaimed wastewater (RWW) were compared with well water (WW) on citrus (Citrus paradisi Macfad. X Citrus aurantium L) nutrition. The deviation from the optimum percentage (DOP) index of macro- and micro-nutrients were used to evaluate the nutritional status: optimal (DOP = 0), deficiency (DOP < 0) or excess (DOP > 0). After 11 years of RWW irrigation the influence on nutrient concentration in plants decreased in the order: B > Zn > Mn = Ca > Cu > Mg > P > K. Reclaimed wastewater irritation positively affected citrus nutrition as it rendered the concentration of macronutrients, i.e. P, Ca, and K. closer to their optimum levels (Sigma DOP(macro) = 7). However micro-nutrients tended to be excessive in plants (EDOP(micro) = 753) due to imbalanced supply of these elements in the RWW, particularly, for B and Cu. Citrus groves with long-term RWW irrigation may exercised caution in monitoring concentrations of B and Cu to avoid plant toxicity and soil quality degradation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The optimal dose of nitrogen (N) in potato crop depends on the production system. The objective of this study was to determine the optimal dose of N for the production of basic potato seed minitubers and evaluate the effect of N rates on physiological and nitrogen indices in the youngest fully developed leaf (fourth leaf) and in the oldest leaf of the plants at 60 days after planting. The experiment was conducted in a greenhouse at the Departamento de Fitotecnia da Universidade Federal de Viçosa. The treatments consisted of five N rates (0, 45, 90, 180 and 360 mg dm-3), with 10% of each dose applied at planting and the remainder through irrigation water, daily, for 30 days. The nitrogen rates positively influenced the physiological indices (length, width, leaf area, number of leaves, fresh mass and dry mass) and nitrogen (level and content of N and N-NO³ in the dry mass and SPAD) both in the fourth leaf and in the oldest leaf. Likewise, the N rates positively influenced the number and mass of harvested tubers. The largest number (5.44 tubers/plant) and the maximum mass of tubers (243.5 g/plant) were obtained with 360.0 and 332.9 mg N dm-3, respectively. Therefore, the mass and number of tubers were not optimized by the same N rate. The critical SPAD index was 38.8 in the fourth leaf, which was more sensitive to the effect of N rates than the oldest leaf.
Resumo:
ABSTRACT Large salty areas in the Brazilian semi-arid region have limited farming in Northeastern Brazil. One example is the sugar cane cultivation, which reinforces the need of selecting varieties that are more tolerant to salinity. The objective of this study was to evaluate the effect of salinity on growth of ten varieties of sugar cane. The experiment was conducted in a greenhouse, set in the experimental field of Embrapa Semiárido, in Petrolina, Pernambuco State. The experimental design was randomized blocks arranged in a 6 X 10 factorial arrangement, comprised of six levels of salinity (0, 1.0, 2.0, 4.0, 6.0 and 8.0 dS m-1) and ten sugar cane varieties (VAT 90212; RB 72454; RB 867515; Q 124; RB 961003; RB 957508; SP791011; RB 835089; RB 92579 and SP 943206). Salt levels of irrigation water were obtained by adding NaCl, CaCl2.2H2O and MgSO4.7H2O to achieve an equivalent ratio among Na:Ca:Mg of 7:2:1. Sixty days later, plant height, stem diameter (base), number of leaves, stalks and sprouts, leaf area and fresh and dry mass of the aerial part and roots were all measured. The varieties of sugar cane showed similar responses for growth reduction as soil salinity increases, being considered moderately sensitive to salinity.
Resumo:
This paper deals with Mimosicerya hempeli (Cock., 1899) (Homoptera, Margarodidae) and its predator, the ladybeetle Exo-plectra erythrogaster Muls., 1851 (Coleoptews, Coccinellidae), which were found to occur at Piracicaba, State of São Paulo, Brasil. The first is a pest of "cássia imperial" (Cassia fistula L.), and several other trees. As those insects are little known, a few bionomical notes and descriptions of some of their stages are presented. The adult scales proved to be very resistant to an application of mineral oil plus malathion. Methyl Demeton applied with irrigation water showed no control. The same insecticide injected into the trunk gave very poor results.
Resumo:
Salinity levels in soils of the Outer Coastal Plain of Rio Grande do Sul, Brazil, can be high, due to excess of Na in the irrigation water, evapotranspiration and soil development from marine sediments. The cultivation of irrigated rice could be an alternative, since ion uptake as well as leaching by the establishment of a water layer could mitigate the effects of soil salinity. This study aimed to evaluate the dynamics of basic cations in the solution of Albaqualf soils with different salinity levels growing irrigated rice. The plow layer contained exchangeable Na percentages (ESP) of 5.6, 9.0, 21.2 and 32.7 %. The plant stand, dry matter, Na, K and Ca + Mg uptake at full flowering and grain yield were evaluated. The levels of Na, K, Ca + Mg and electrical conductivity (EC) in the soil solution were also measured weekly during the rice cycle at four soil depths, in the water layer and irrigation water. The Na, K and Ca + Mg uptake by rice at full flowering was used to estimate ion depletion from the layer under root influence. Soil salinity induced a reduction in the rice stand, especially in the soil with ESP of 32.7 %, resulting in lower cation uptake and very low yield at that site. As observed in the water layer and irrigation water, the Na, K, Ca + Mg and EC levels in the soil solution decreased with time at depths of 5, 10 and 20 cm, regardless of the original soil salinity, showing that cation dynamics in the plow layer was determined by leaching and root uptake, rather than by the effect of evapoconcentration of basic cations in the soil surface layer.
Resumo:
Melon is one of the most demanding cucurbits regarding fertilization, requiring knowledge of soils, crop nutritional requirements, time of application, and nutrient use efficiency for proper fertilization. Developing support systems for decision-making for fertilization that considers these variables in nutrient requirement and supply is necessary. The objective of this study was parameterization of a fertilizer recommendation system for melon (Ferticalc-melon) based on nutritional balance. To estimate fertilizer recommendation, the system considers the requirement subsystem (REQ), which includes the demand for nutrients by the plant, and the supply subsystem (SUP), which corresponds to the supply of nutrients through the soil and irrigation water. After determining the REQtotal and SUPtotal, the system calculates the nutrient balances for N, P, K, Ca, Mg, and S, recommending fertilizer application if the balance is negative (SUP < REQ), but not if the balance is positive or zero (SUP ≥ REQ). Simulations were made for different melon types (Yellow, Cantaloupe, Galia and Piel-de-sapo), with expected yield of 45 t ha-1. The system estimated that Galia type was the least demanding in P, while Piel-de-sapo was the most demanding. Cantaloupe was the least demanding for N and Ca, while the Yellow type required less K, Mg, and S. As compared to other fertilizer recommendation methods adopted in Brazil, the Ferticalc system was more dynamic and flexible. Although the system has shown satisfactory results, it needs to be evaluated under field conditions to improve its recommendations.
Resumo:
Presentem una caracterització de la distribució espacial de la contaminació per nitrats en els aqüífers de la plana del baix Fluvià. En concret, els valors de concentració més elevats s’han observat a l’aqüífer superficial, on sobrepassen, amb escreix, els límits de potabilitat aconsellats pel RD 1138/1990. L’àrea més afectada ocupa part dels termes municipals de Vilamacolum i Torroella de Fluvià, en els quals hi predominen concentracions que oscil·len entre 50 i 200 mg × L–1. Els focus de contaminació són de tipus puntual i difús. Documentada la presència anormal de nitrats en aquest aqüífer, es planteja el correcte maneig agrícola, en vistes a una doble finalitat: d’una banda, contribuir a la planificació d’unes bones pràctiques agrícoles tenint en compte la relació entre volums de reg i aportacions de nitrogen; d’altra banda, preveure una progressiva recuperació de la qualitat de l’aqüífer, a partir de l’ús de tecnologies que integrin la ubicació d’unes zones favorables on es pugui maximitzar l’extracció del recurs contaminat, i la ubicació d’uns sòls aptes per a l’aplicació d’aquest recurs, amb uns criteris agronòmics coherents.
Resumo:
The effectiveness of fungicides in controlling white mold (Sclerotinia sclerotiorum) of dry beans (Phaseolus vulgaris) was evaluated when they were applied through irrigation water directly onto the plants or only to the soil. Two field trials were installed in April 1998 and April 1999 in Viçosa, MG. Trials were conducted as a (2 x 3) + 1 factorial: two fungicides x three application modes + one untreated control. The fungicides were benomyl (1.0 kg a.i. ha-1) and fluazinam (0.5 l a.i. ha-1). The three application modes were: (a) by backpack sprayer (667 l ha-1), (b) by garden watering-cans simulating sprinkler irrigation with 35,000 l ha-1 of water, and (c) by garden watering-cans applying water between the rows and near the soil surface in 35,000 l ha-1 of water. In 1998, fungicides were applied at 43 and 54 days after emergence (DAE); in 1999, at 47 and 61 DAE. Both fungicides were similarly effective on white mold control when applied by either chemigation or backpack sprayer, resulting in yields 21% higher than untreated control. Only fluazinam provided disease control when applications were made only in soil. Chemigation provided white mold control equivalent to that of backpack sprayer in terms of incidence, severity and number of diseased pods. Consequently, yield differences between these application methods were not significant.
Resumo:
The use of saline water and the reuse of drainage water for irrigation depend on long-term strategies that ensure the sustainability of socio-economic and environmental impacts of agricultural systems. In this study, it was evaluated the effects of irrigation with saline water in the dry season and fresh water in the rainy season on the soil salt accumulation yield of maize and cowpea, in a crop rotation system. The experiment was conducted in the field, using a randomized complete block design, with five replications. The first crop was installed during the dry season of 2007, with maize irrigated with water of different salinities (0.8, 2.2, 3.6 and 5.0 dS m-1). The maize plants were harvested at 90 days after sowing (DAS), and vegetative growth, dry mass of 1000 seeds and grain yield were evaluated. The same plots were utilized for the cultivation of cowpea, during the rainy season of 2008. At the end of the crop, cycle plants of this species were harvested, being evaluated the vegetative growth and plant yield. Soil samples were collected before and after maize and cowpea cultivation. The salinity of irrigation water above 2.2 dS m-1 reduced the yield of maize during the dry season. The high total rainfall during the rainy season resulted in leaching of salts accumulated during cultivation in the dry season, and eliminated the possible negative effects of salinity on cowpea plants. However, this crop showed atypical behavior with a significant proportion of vegetative mass and low pod production, which reduced the efficiency of this strategy of crop rotation under the conditions of this study.