964 resultados para Invariant Object Recognition
Resumo:
In the cerebrospinal fluid of 26 drug-naive schizophrenics (DSM-III- R), we observed that the level of glutathione ([GSH]) and of its metabolite γ-Glu-Gln was decreased by 27% and 16% respectively. Using a new in-vivo method based on magnetic resonance spec- troscopy, [GSH] was measured in the medial prefrontal cortex of 18 schizophrenics and found to be 52 % lower than in controls (n = 20). This is consistent with the recently observed decreased mRNA levels in fibroblasts of patients (n=32) of the two GSH synthesizing en- zymes (glutathione synthetase (GSS), and glutamate-cysteine ligase M (GCLM) the modulatory subunit of glutamate-cysteine ligase). Moreover, the level of GCLM expression in fibroblasts correlates neg- atively with the psychopathology (positive, general and some nega- tive symptoms). Thus, the observed difference in gene expression is not only the cause of low brain [GSH], but is also related to the sever- ity of symptoms, suggesting that fibroblasts are adequate surrogate for brain tissue. A hypothesis was proposed, based on a central role of GSH in the pathophysiology of schizophrenia. GSH is an important endogenous redox regulator and neuroactive substance. GSH is pro- tecting cells from damage by reactive oxygen species generated, among others, by the metabolism of dopamine. A GSH deficit-in- duced oxidative stress would lead to lipid peroxidation and micro-le- sions in the surrounding of catecholamine terminals, affecting the synaptic contacts on dendritic spines of cortical neurones, where ex- citatory glutamatergic terminals converge with dopaminergic ones. This would lead to spines degeneration and abnormal nervous con- nections or structural disconnectivity, possibly responsible for posi- tive, perceptive and cognitive symptoms of schizophrenia. In addi- tion, a GSH deficit could also lead to a functional disconnectivity by depressing NMDA neurotransmission, in analogy to phencyclidine effects. Present experimental biochemical, cell biological and behav- ioral data are consistent with the proposed mechanism: decreasing pharmacologically [GSH] in experimental models, with or without blocking DA uptake (GBR12909), induces morphological and behav- ioral changes similar to those observed in patients. Dendritic spines: (a) In neuronal cultures, low [GSH] and DA induce decreased density of neural processes; (b) In developing rats (p5-p16), [GSH] deficit and GBR induce a decrease in normal spines in prefrontal pyramids and in GABA-parvalbumine but not of -calretinine immunoreactivity in anterior cingulate. NMDA-dependant synaptic plasticity: GSH deple- I/13 tion in hippocampal slices impairs long-term potentiation. Develop- ing rats with low [GSH] and GBR have deficit in olfactory integration and in object recognition which appears earlier in males than fe- males, in analogy to the delay of the psychosis onset between man and woman. In summary, a deficit of GSH and/or GSH-related enzymes during early development could constitute a major vulnerability fac- tor in schizophrenia.
Resumo:
Converging evidence favors an abnormal susceptibility to oxidative stress in schizophrenia. Decreased levels of glutathione (GSH), the major cellular antioxidant and redox regulator, was observed in cerebrospinal-fluid and prefrontal cortex of patients. Importantly, abnormal GSH synthesis of genetic origin was observed: Two case-control studies showed an association with a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease associated genotypes (35% of patients) correlated with decreased GCLC protein, GCL activity and GSH content. Similar GSH system anomalies were observed in early psychosis patients. Such redox dysregulation combined with environmental stressors at specific developmental stages could underlie structural and functional connectivity anomalies. In pharmacological and knock-out (KO) models, GSH deficit induces anomalies analogous to those reported in patients. (a) morphology: spine density and GABA-parvalbumine immunoreactivity (PV-I) were decreased in anterior cingulate cortex. KO mice showed delayed cortical PV-I at PD10. This effect is exacerbated in mice with increased DA from PD5-10. KO mice exhibit cortical impairment in myelin and perineuronal net known to modulate PV connectivity. (b) physiology: In cultured neurons, NMDA response are depressed by D2 activation. In hippocampus, NMDA-dependent synaptic plasticity is impaired and kainate induced g-oscillations are reduced in parallel to PV-I. (c) cognition: low GSH models show increased sensitivity to stress, hyperactivity, abnormal object recognition, olfactory integration and social behavior. In a clinical study, GSH precursor N-acetyl cysteine (NAC) as add on therapy, improves the negative symptoms and decreases the side effects of antipsychotics. In an auditory oddball paradigm, NAC improves the mismatched negativity, an evoked potential related to pre-attention and to NMDA receptors function. In summary, clinical and experimental evidence converge to demonstrate that a genetically induced dysregulation of GSH synthesis combined with environmental insults in early development represent a major risk factor contributing to the development of schizophrenia
Resumo:
SAMP8 is a strain of mice with accelerated senescence. These mice have recently been the focus of attention as they show several alterations that have also been described in Alzheimer"s disease (AD) patients. The number of dendritic spines, spine plasticity, and morphology are basic to memory formation. In AD, the density of dendritic spines is severely decreased. We studied memory alterations using the object recognition test. We measured levels of synaptophysin as a marker of neurotransmission and used Golgi staining to quantify and characterize the number and morphology of dendritic spines in SAMP8 mice and in SAMR1 as control animals. While there were no memory differences at 3 months of age, the memory of both 6- and 9-month-old SAMP8 mice was impaired in comparison with age-matched SAMR1 mice or young SAMP8 mice. In addition, synaptophysin levels were not altered in young SAMP8 animals, but SAMP8 aged 6 and 9 months had less synaptophysin than SAMR1 controls and also less than 3-month-old SAMP8 mice. Moreover, while spine density remained stable with age in SAMR1 mice, the number of spines started to decrease in SAMP8 animals at 6 months, only to get worse at 9 months. Our results show that from 6 months onwards SAMP8 mice show impaired memory. This age coincides with that at which the levels of synaptophysin and spine density decrease. Thus, we conclude that together with other studies that describe several alterations at similar ages, SAMP8 mice are a very suitable model for studying AD.
Resumo:
We develop a method for obtaining 3D polarimetric integral images from elemental images recorded in low light illumination conditions. Since photon-counting images are very sparse, calculation of the Stokes parameters and the degree of polarization should be handled carefully. In our approach, polarimetric 3D integral images are generated using the Maximum Likelihood Estimation and subsequently reconstructed by means of a Total Variation Denoising filter. In this way, polarimetric results are comparable to those obtained in conventional illumination conditions. We also show that polarimetric information retrieved from photon starved images can be used in 3D object recognition problems. To the best of our knowledge, this is the first report on 3D polarimetric photon counting integral imaging.
Resumo:
The serious neuropsychological repercussions of hepatic encephalopathy have led to the creation of several experimental models in order to better understand the pathogenesis of the disease. In the present investigation, two possible causes of hepatic encephalopathy, cholestasis and portal hypertension, were chosen to study the behavioral impairments caused by the disease using an object recognition task. This working memory test is based on a paradigm of spontaneous delayed non-matching to sample and was performed 60 days after surgery. Male Wistar rats (225-250 g) were divided into three groups: two experimental groups, microsurgical cholestasis (N = 20) and extrahepatic portal hypertension (N = 20), and a control group (N = 20). A mild alteration of the recognition memory occurred in rats with cholestasis compared to control rats and portal hypertensive rats. The latter group showed the poorest performance on the basis of the behavioral indexes tested. In particular, only the control group spent significantly more time exploring novel objects compared to familiar ones (P < 0.001). In addition, the portal hypertension group spent the shortest time exploring both the novel and familiar objects (P < 0.001). These results suggest that the existence of portosystemic collateral circulation per se may be responsible for subclinical encephalopathy.
Resumo:
The pharmacology of synthetic organoselenium compounds indicates that they can be used as antioxidants, enzyme inhibitors, neuroprotectors, anti-tumor and anti-infectious agents, and immunomodulators. In this review, we focus on the effects of diphenyl diselenide (DPDS) in various biological model organisms. DPDS possesses antioxidant activity, confirmed in several in vitro and in vivo systems, and thus has a protective effect against hepatic, renal and gastric injuries, in addition to its neuroprotective activity. The activity of the compound on the central nervous system has been studied since DPDS has lipophilic characteristics, increasing adenylyl cyclase activity and inhibiting glutamate and MK-801 binding to rat synaptic membranes. Systemic administration facilitates the formation of long-term object recognition memory in mice and has a protective effect against brain ischemia and on reserpine-induced orofacial dyskinesia in rats. On the other hand, DPDS may be toxic, mainly because of its interaction with thiol groups. In the yeast Saccharomyces cerevisiae, the molecule acts as a pro-oxidant by depleting free glutathione. Administration to mice during cadmium intoxication has the opposite effect, reducing oxidative stress in various tissues. DPDS is a potent inhibitor of d-aminolevulinate dehydratase and chronic exposure to high doses of this compound has central effects on mouse brain, as well as liver and renal toxicity. Genotoxicity of this compound has been assessed in bacteria, haploid and diploid yeast and in a tumor cell line.
Resumo:
Sepsis and its complications are the leading causes of mortality in intensive care units, accounting for 10-50% of deaths. Intensive care unit survivors present long-term cognitive impairment, including alterations in memory, attention, concentration, and/or global loss of cognitive function. In the present study, we investigated behavioral alterations in sepsis-surviving rats. One hundred and ten male Wistar rats (3-4 months, 250-300 g) were submitted to cecal ligation and puncture (CLP), and 44 were submitted to sham operation. Forty-four rats (40%) survived after CLP, and all sham-operated animals survived and were used as control. Twenty animals of each group were used in the object recognition task (10 in short-term memory and 10 in long-term memory), 12 in the plus-maze test and 12 in the forced swimming test. Ten days after surgery, the animals were submitted individually to an object recognition task, plus-maze and forced swimming tests. A significant impairment of short- and long-term recognition memory was observed in the sepsis group (recognition index 0.75 vs 0.55 and 0.74 vs 0.51 for short- and long-term memory, respectively (P < 0.05). In the elevated plus-maze test no difference was observed between groups in any of the parameters assessed. In addition, sepsis survivors presented an increase in immobility time in the forced swimming test (180 vs 233 s, P < 0.05), suggesting the presence of depressive-like symptoms in these animals after recovery from sepsis. The present results demonstrated that rats surviving exposure to CLP, a classical sepsis model, presented recognition memory impairment and depressive-like symptoms but not anxiety-like behavior.
Resumo:
Many industrial applications need object recognition and tracking capabilities. The algorithms developed for those purposes are computationally expensive. Yet ,real time performance, high accuracy and small power consumption are essential measures of the system. When all these requirements are combined, hardware acceleration of these algorithms becomes a feasible solution. The purpose of this study is to analyze the current state of these hardware acceleration solutions, which algorithms have been implemented in hardware and what modifications have been done in order to adapt these algorithms to hardware.
Resumo:
Les temps de réponse dans une tache de reconnaissance d’objets visuels diminuent de façon significative lorsque les cibles peuvent être distinguées à partir de deux attributs redondants. Le gain de redondance pour deux attributs est un résultat commun dans la littérature, mais un gain causé par trois attributs redondants n’a été observé que lorsque ces trois attributs venaient de trois modalités différentes (tactile, auditive et visuelle). La présente étude démontre que le gain de redondance pour trois attributs de la même modalité est effectivement possible. Elle inclut aussi une investigation plus détaillée des caractéristiques du gain de redondance. Celles-ci incluent, outre la diminution des temps de réponse, une diminution des temps de réponses minimaux particulièrement et une augmentation de la symétrie de la distribution des temps de réponse. Cette étude présente des indices que ni les modèles de course, ni les modèles de coactivation ne sont en mesure d’expliquer l’ensemble des caractéristiques du gain de redondance. Dans ce contexte, nous introduisons une nouvelle méthode pour évaluer le triple gain de redondance basée sur la performance des cibles doublement redondantes. Le modèle de cascade est présenté afin d’expliquer les résultats de cette étude. Ce modèle comporte plusieurs voies de traitement qui sont déclenchées par une cascade d’activations avant de satisfaire un seul critère de décision. Il offre une approche homogène aux recherches antérieures sur le gain de redondance. L’analyse des caractéristiques des distributions de temps de réponse, soit leur moyenne, leur symétrie, leur décalage ou leur étendue, est un outil essentiel pour cette étude. Il était important de trouver un test statistique capable de refléter les différences au niveau de toutes ces caractéristiques. Nous abordons la problématique d’analyser les temps de réponse sans perte d’information, ainsi que l’insuffisance des méthodes d’analyse communes dans ce contexte, comme grouper les temps de réponses de plusieurs participants (e. g. Vincentizing). Les tests de distributions, le plus connu étant le test de Kolmogorov- Smirnoff, constituent une meilleure alternative pour comparer des distributions, celles des temps de réponse en particulier. Un test encore inconnu en psychologie est introduit : le test d’Anderson-Darling à deux échantillons. Les deux tests sont comparés, et puis nous présentons des indices concluants démontrant la puissance du test d’Anderson-Darling : en comparant des distributions qui varient seulement au niveau de (1) leur décalage, (2) leur étendue, (3) leur symétrie, ou (4) leurs extrémités, nous pouvons affirmer que le test d’Anderson-Darling reconnait mieux les différences. De plus, le test d’Anderson-Darling a un taux d’erreur de type I qui correspond exactement à l’alpha tandis que le test de Kolmogorov-Smirnoff est trop conservateur. En conséquence, le test d’Anderson-Darling nécessite moins de données pour atteindre une puissance statistique suffisante.
Resumo:
Les tâches de vision artificielle telles que la reconnaissance d’objets demeurent irrésolues à ce jour. Les algorithmes d’apprentissage tels que les Réseaux de Neurones Artificiels (RNA), représentent une approche prometteuse permettant d’apprendre des caractéristiques utiles pour ces tâches. Ce processus d’optimisation est néanmoins difficile. Les réseaux profonds à base de Machine de Boltzmann Restreintes (RBM) ont récemment été proposés afin de guider l’extraction de représentations intermédiaires, grâce à un algorithme d’apprentissage non-supervisé. Ce mémoire présente, par l’entremise de trois articles, des contributions à ce domaine de recherche. Le premier article traite de la RBM convolutionelle. L’usage de champs réceptifs locaux ainsi que le regroupement d’unités cachées en couches partageant les même paramètres, réduit considérablement le nombre de paramètres à apprendre et engendre des détecteurs de caractéristiques locaux et équivariant aux translations. Ceci mène à des modèles ayant une meilleure vraisemblance, comparativement aux RBMs entraînées sur des segments d’images. Le deuxième article est motivé par des découvertes récentes en neurosciences. Il analyse l’impact d’unités quadratiques sur des tâches de classification visuelles, ainsi que celui d’une nouvelle fonction d’activation. Nous observons que les RNAs à base d’unités quadratiques utilisant la fonction softsign, donnent de meilleures performances de généralisation. Le dernière article quand à lui, offre une vision critique des algorithmes populaires d’entraînement de RBMs. Nous montrons que l’algorithme de Divergence Contrastive (CD) et la CD Persistente ne sont pas robustes : tous deux nécessitent une surface d’énergie relativement plate afin que leur chaîne négative puisse mixer. La PCD à "poids rapides" contourne ce problème en perturbant légèrement le modèle, cependant, ceci génère des échantillons bruités. L’usage de chaînes tempérées dans la phase négative est une façon robuste d’adresser ces problèmes et mène à de meilleurs modèles génératifs.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
La reconnaissance d’objets est une tâche complexe au cours de laquelle le cerveau doit assembler de manière cohérente tous les éléments d’un objet accessible à l’œil afin de le reconnaître. La construction d’une représentation corticale de l’objet se fait selon un processus appelé « bottom-up », impliquant notamment les régions occipitales et temporales. Un mécanisme « top-down » au niveau des régions pariétales et frontales, facilite la reconnaissance en suggérant des identités potentielles de l’objet à reconnaître. Cependant, le mode de fonctionnement de ces mécanismes est peu connu. Plusieurs études ont démontré une activité gamma induite au moment de la perception cohérente de stimuli, lui conférant ainsi un rôle important dans la reconnaissance d’objets. Cependant, ces études ont utilisé des techniques d’enregistrement peu précises ainsi que des stimuli répétitifs. La première étude de cette thèse vise à décrire la dynamique spatio-temporelle de l’activité gamma induite à l’aide de l’électroencéphalographie intracrânienne, une technique qui possède des résolutions spatiales et temporelles des plus précises. Une tâche d’images fragmentées a été conçue dans le but de décrire l’activité gamma induite selon différents niveaux de reconnaissance, tout en évitant la répétition de stimuli déjà reconnus. Afin de mieux circonscrire les mécanismes « top-down », la tâche a été répétée après un délai de 24 heures. Les résultats démontrent une puissante activité gamma induite au moment de la reconnaissance dans les régions « bottom-up ». Quant aux mécanismes « top-down », l’activité était plus importante aux régions occipitopariétales. Après 24 heures, l’activité était davantage puissante aux régions frontales, suggérant une adaptation des procédés « top-down » selon les demandes de la tâche. Très peu d’études se sont intéressées au rythme alpha dans la reconnaissance d’objets, malgré qu’il soit bien reconnu pour son rôle dans l’attention, la mémoire et la communication des régions neuronales distantes. La seconde étude de cette thèse vise donc à décrire plus précisément l’implication du rythme alpha dans la reconnaissance d’objets en utilisant les techniques et tâches identiques à la première étude. Les analyses révèlent une puissante activité alpha se propageant des régions postérieures aux régions antérieures, non spécifique à la reconnaissance. Une synchronisation de la phase de l’alpha était, quant à elle, observable qu’au moment de la reconnaissance. Après 24 heures, un patron similaire était observable, mais l’amplitude de l’activité augmentait au niveau frontal et les synchronies de la phase étaient davantage distribuées. Le rythme alpha semble donc refléter des processus attentionnels et communicationnels dans la reconnaissance d’objets. En conclusion, cette thèse a permis de décrire avec précision la dynamique spatio-temporelle de l’activité gamma induite et du rythme alpha ainsi que d’en apprendre davantage sur les rôles potentiels que ces deux rythmes occupent dans la reconnaissance d’objets.
Resumo:
L’objectif de cette thèse par articles est de présenter modestement quelques étapes du parcours qui mènera (on espère) à une solution générale du problème de l’intelligence artificielle. Cette thèse contient quatre articles qui présentent chacun une différente nouvelle méthode d’inférence perceptive en utilisant l’apprentissage machine et, plus particulièrement, les réseaux neuronaux profonds. Chacun de ces documents met en évidence l’utilité de sa méthode proposée dans le cadre d’une tâche de vision par ordinateur. Ces méthodes sont applicables dans un contexte plus général, et dans certains cas elles on tété appliquées ailleurs, mais ceci ne sera pas abordé dans le contexte de cette de thèse. Dans le premier article, nous présentons deux nouveaux algorithmes d’inférence variationelle pour le modèle génératif d’images appelé codage parcimonieux “spike- and-slab” (CPSS). Ces méthodes d’inférence plus rapides nous permettent d’utiliser des modèles CPSS de tailles beaucoup plus grandes qu’auparavant. Nous démontrons qu’elles sont meilleures pour extraire des détecteur de caractéristiques quand très peu d’exemples étiquetés sont disponibles pour l’entraînement. Partant d’un modèle CPSS, nous construisons ensuite une architecture profonde, la machine de Boltzmann profonde partiellement dirigée (MBP-PD). Ce modèle a été conçu de manière à simplifier d’entraînement des machines de Boltzmann profondes qui nécessitent normalement une phase de pré-entraînement glouton pour chaque couche. Ce problème est réglé dans une certaine mesure, mais le coût d’inférence dans le nouveau modèle est relativement trop élevé pour permettre de l’utiliser de manière pratique. Dans le deuxième article, nous revenons au problème d’entraînement joint de machines de Boltzmann profondes. Cette fois, au lieu de changer de famille de modèles, nous introduisons un nouveau critère d’entraînement qui donne naissance aux machines de Boltzmann profondes à multiples prédictions (MBP-MP). Les MBP-MP sont entraînables en une seule étape et ont un meilleur taux de succès en classification que les MBP classiques. Elles s’entraînent aussi avec des méthodes variationelles standard au lieu de nécessiter un classificateur discriminant pour obtenir un bon taux de succès en classification. Par contre, un des inconvénients de tels modèles est leur incapacité de générer deséchantillons, mais ceci n’est pas trop grave puisque la performance de classification des machines de Boltzmann profondes n’est plus une priorité étant donné les dernières avancées en apprentissage supervisé. Malgré cela, les MBP-MP demeurent intéressantes parce qu’elles sont capable d’accomplir certaines tâches que des modèles purement supervisés ne peuvent pas faire, telles que celle de classifier des données incomplètes ou encore celle de combler intelligemment l’information manquante dans ces données incomplètes. Le travail présenté dans cette thèse s’est déroulé au milieu d’une période de transformations importantes du domaine de l’apprentissage à réseaux neuronaux profonds qui a été déclenchée par la découverte de l’algorithme de “dropout” par Geoffrey Hinton. Dropout rend possible un entraînement purement supervisé d’architectures de propagation unidirectionnel sans être exposé au danger de sur- entraînement. Le troisième article présenté dans cette thèse introduit une nouvelle fonction d’activation spécialement con ̧cue pour aller avec l’algorithme de Dropout. Cette fonction d’activation, appelée maxout, permet l’utilisation de aggrégation multi-canal dans un contexte d’apprentissage purement supervisé. Nous démontrons comment plusieurs tâches de reconnaissance d’objets sont mieux accomplies par l’utilisation de maxout. Pour terminer, sont présentons un vrai cas d’utilisation dans l’industrie pour la transcription d’adresses de maisons à plusieurs chiffres. En combinant maxout avec une nouvelle sorte de couche de sortie pour des réseaux neuronaux de convolution, nous démontrons qu’il est possible d’atteindre un taux de succès comparable à celui des humains sur un ensemble de données coriace constitué de photos prises par les voitures de Google. Ce système a été déployé avec succès chez Google pour lire environ cent million d’adresses de maisons.
Resumo:
La capacité du système visuel humain à compléter une image partiellement dévoilée et à en dériver une forme globale à partir de ses fragments visibles incomplets est un phénomène qui suscite, jusqu’à nos jours, l’intérêt de nombreux scientifiques œuvrant dans différents milieux de recherche tels que l’informatique, l’ingénierie en intelligence artificielle, la perception et les neurosciences. Dans le cadre de la présente thèse, nous nous sommes intéressés spécifiquement sur les substrats neuronaux associés à ce phénomène de clôture perceptive. La thèse actuelle a donc pour objectif général d’explorer le décours spatio-temporel des corrélats neuronaux associés à la clôture perceptive au cours d’une tâche d’identification d’objets. Dans un premier temps, le premier article visera à caractériser la signature électrophysiologique liée à la clôture perceptive chez des personnes à développement typique dans le but de déterminer si les processus de clôture perceptive reflèteraient l’interaction itérative entre les mécanismes de bas et de haut-niveau et si ceux-ci seraient sollicités à une étape précoce ou tardive lors du traitement visuel de l’information. Dans un deuxième temps, le second article a pour objectif d’explorer le décours spatio-temporel des mécanismes neuronaux sous-tendant la clôture perceptive dans le but de déterminer si les processus de clôture perceptive des personnes présentant un trouble autistique se caractérisent par une signature idiosyncrasique des changements d’amplitude des potentiels évoqués (PÉs). En d’autres termes, nous cherchons à déterminer si la clôture perceptive en autisme est atypique et nécessiterait davantage la contribution des mécanismes de bas-niveau et/ou de haut-niveau. Les résultats du premier article indiquent que le phénomène de clôture perceptive est associé temporellement à l’occurrence de la composante de PÉs N80 et P160 tel que révélé par des différences significatives claires entre des objets et des versions méconnaissables brouillées. Nous proposons enfin que la clôture perceptive s’avère un processus de transition reflétant les interactions proactives entre les mécanismes neuronaux œuvrant à apparier l’input sensoriel fragmenté à une représentation d’objets en mémoire plausible. Les résultats du second article révèlent des effets précoces de fragmentation et d’identification obtenus au niveau de composantes de potentiels évoqués N80 et P160 et ce, en toute absence d’effets au niveau des composantes tardives pour les individus avec autisme de haut niveau et avec syndrome d’Asperger. Pour ces deux groupes du trouble du spectre autistique, les données électrophysiologiques suggèrent qu’il n’y aurait pas de pré-activation graduelle de l’activité des régions corticales, entre autres frontales, aux moments précédant et menant vers l’identification d’objets fragmentés. Pour les participants autistes et avec syndrome d’Asperger, les analyses statistiques démontrent d’ailleurs une plus importante activation au niveau des régions postérieures alors que les individus à développement typique démontrent une activation plus élevée au niveau antérieur. Ces résultats pourraient suggérer que les personnes du spectre autistique se fient davantage aux processus perceptifs de bas-niveau pour parvenir à compléter les images d’objets fragmentés. Ainsi, lorsque confrontés aux images d’objets partiellement visibles pouvant sembler ambiguës, les individus avec autisme pourraient démontrer plus de difficultés à générer de multiples prédictions au sujet de l’identité d’un objet qu’ils perçoivent. Les implications théoriques et cliniques, les limites et perspectives futures de ces résultats sont discutées.
Resumo:
As AI has begun to reach out beyond its symbolic, objectivist roots into the embodied, experientialist realm, many projects are exploring different aspects of creating machines which interact with and respond to the world as humans do. Techniques for visual processing, object recognition, emotional response, gesture production and recognition, etc., are necessary components of a complete humanoid robot. However, most projects invariably concentrate on developing a few of these individual components, neglecting the issue of how all of these pieces would eventually fit together. The focus of the work in this dissertation is on creating a framework into which such specific competencies can be embedded, in a way that they can interact with each other and build layers of new functionality. To be of any practical value, such a framework must satisfy the real-world constraints of functioning in real-time with noisy sensors and actuators. The humanoid robot Cog provides an unapologetically adequate platform from which to take on such a challenge. This work makes three contributions to embodied AI. First, it offers a general-purpose architecture for developing behavior-based systems distributed over networks of PC's. Second, it provides a motor-control system that simulates several biological features which impact the development of motor behavior. Third, it develops a framework for a system which enables a robot to learn new behaviors via interacting with itself and the outside world. A few basic functional modules are built into this framework, enough to demonstrate the robot learning some very simple behaviors taught by a human trainer. A primary motivation for this project is the notion that it is practically impossible to build an "intelligent" machine unless it is designed partly to build itself. This work is a proof-of-concept of such an approach to integrating multiple perceptual and motor systems into a complete learning agent.