999 resultados para Invading plant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA silencing-related mechanisms have been documented in almost all living organisms and RNA silencing is now used as board term to describe the vast array of related processes involving RNA–RNA, RNA–DNA, RNA–protein or protein–protein interactions that ultimately result in the repression of gene expression. In plants, the parallel RNA silencing pathways have evolved to extraordinary levels of complexity and diversity, playing crucial roles in providing protection against invading nucleic acids derived from viruses or replicating transposons, controlling chromatin modifications as well as regulating endogenous gene expression to ensure normal plant growth and development. The aims of this chapter are (1) to provide an overview of the initial curious observations of RNA silencing-related phenomena in plants, (2) to outline the parallel gene silencing pathways of plants, and (3) to discuss current applications of RNA silencing technologies to not only study but also modify plant development

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In binary vectors, the antibiotic resistance gene used for selection of transformed plant cells is also usually expressed in the transforming Agrobacterium cells. This expression gives the bacterium antibiotic resistance, an unnecessary advantage on selective medium containing the antibiotic. Insertion of a castor bean catalase-1 (CAT-1) gene intron or a Parasponia andersonii haemoglobin gene intron into the coding region of the selectable marker gene, hph, completely abolished the expression of the gene in Agrobacterium, rendering it susceptible to hygromycin B. Use of these modified binary vectors minimized the overgrowth of Agrobacterium during plant transformation. Both of the introns were correctly spliced in plant cells and significantly enhanced hph gene expression in transformed rice tissue. The presence of these introns in the hph coding sequence not only maintained the selection efficiency of the hph gene, but with the CAT-1 intron also substantially increased the frequency of rice transformation. Transgenic lines with an intron-hph gene generally contained fewer gene copies and produced substantially more mRNA of the predicted size. Our results also indicate that transgenic plants with many copies of the transgene were more likely to show gene silencing than plants with 1-3 copies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GPV is a Chinese serotype isolate of barley yellow dwarf virus (BYDV) that has no reaction with antiserum of MAV, PAV, SGV, RPV and RMV The sequence of the coat protein (CP) of GPV isolate of BYDV was identified and its amino acid sequence was deduced. The coding region for the putative GPV CP is 603 bases nucleotides and encodes a Mr 22 218 (22 ku) protein. The same as MAV, PAV and RPV, GPV contained a second ORF within the coat protein coding region. This protein of 17 024 Mr (17 ku) is thought to correspond to the Virion protein genome linked (Vpg). Sequence comparisons of the CP coding region between the GPV isolate of BYDV and other isolates of BYDV have been done. The nucleotide and amino acid sequence homology of GPV has a greater identity to the sequence of RPV than those of PAV and MAV. The GPV CP sequence stored 83.7% of nucleotide similarity and 77.5% of deduced amino acid similarity, whereas that of the PAV and MAV shared 56.9%, 53.2% and 44.1%, 43.8% respectively. According to BYDV-GPV CP sequence, two primers were designed. The cDNA of CP was produced by RT-PCR. Full-length cDNA of CP was inserted into plasmid to construct expression plasmids named pPPI1, pPPI2 and pPPI5 based on different promoters. The recombinant plasmids were identified by using α-32P-dATP labelled CP probe, α-32P-ATP labelled GPV RNA probe and sequencing to confirm real GPV CP gene cDNA in plasmids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study cell wall properties; moisture distribution, stiffness, thickness and cell dimension have been taken into consideration. Cell wall stiffness dependent on complex combination of plant cell microstructures, composition and water holding capacity of the cell. In this work, some preliminary steps taken by investing cell wall properties of apple in order to predict change of porosity and shrinkage during drying. Two different types of apple cell wall characteristic were investigated to correlate with porosity and shrinkage after convective drying. A scanning electron microscope (SEM), 2N Intron, a pyncometer and image J software were used in order to measure and analyze cell characteristics, water dynamics, porosity and shrinkage. Cell stiffness of red delicious apple was found higher than granny smith apples. A significant relationship has found between cell wall characteristics and both heat and mass transfer. Consequently, evolution of porosity and shrinkage noticeably influenced during convective drying by the nature of cell wall. This study has brought better understanding of porosity and shrinkage of dried food stuff in microscopic (cell) level and would provide better insight to attain energy effective drying process and quality food stuff.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterovirus 71 (EV71) is one of the main etiological agents for Hand, Foot and Mouth Disease (HFMD) and has been shown to be associated with severe clinical manifestation. Currently, there is no antiviral therapeutic for the treatment of HFMD patients owing to a lack of understanding of EV71 pathogenesis. This study seeks to elucidate the transcriptomic changes that result from EV71 infection. Human whole genome microarray was employed to monitor changes in genomic profiles between infected and uninfected cells. The results reveal altered expression of human genes involved in critical pathways including the immune response and the stress response. Together, data from this study provide valuable insights into the host–pathogen interaction between human colorectal cells and EV71.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This case study was conducted to explore the perceptions of health risk messages sent by the Japanese Government following the Fukushima nuclear power plant disaster. The content of health risk messages from the Japanese Government and the Japanese national broadcaster (NHK) were analysed and semi-structured interviews were conducted with a sample of Tokyo residents. Initially, participants trusted these messages but as the crisis unfolded they became sceptical about the messages. Participants felt the messages did not communicate health risk information effectively because the messages were; not supported by evidence, inconsistent, delayed and changed over time. Despite widespread access to the internet, social media and mobile telephones, most participants relied on television news for information about the health risks. The Japanese Government urgently needs to re-build trust by engaging the community in the planning and development phases of health risk communication strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a study of ion exchange (IX) as an alternative CSG water treatment to the widely used reverse osmosis (RO) desalination process. An IX pilot plant facility has been constructed and operated using both synthetic and real CSG water samples. Application of appropriate synthetic resin technology has proved the effectiveness of IX processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virus-based transgene expression systems have become particularly valuable for recombinant protein production in plants. The dual-module in-plant activation (INPACT) expression platform consists of a uniquely designed split-gene cassette incorporating the cis replication elements of Tobacco yellow dwarf geminivirus (TYDV) and an ethanol-inducible activation cassette encoding the TYDV Rep and RepA replication-associated proteins. The INPACT system is essentially tailored for recombinant protein production in stably transformed plants and provides both inducible and high-level transient transgene expression with the potential to be adapted to diverse crop species. The construction of a novel split-gene cassette, the inducible nature of the system and the ability to amplify transgene expression via rolling-circle replication differentiates this system from other DNA- and RNA-based virus vector systems used for stable or transient recombinant protein production in plants. Here we provide a detailed protocol describing the design and construction of a split-gene INPACT cassette, and we highlight factors that may influence optimal activation and amplification of gene expression in transgenic plants. By using Nicotiana tabacum, the protocol takes 6-9 months to complete, and recombinant proteins expressed using INPACT can accumulate to up to 10% of the leaf total soluble protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant based dried food products are popular commodities in global market where much research is focused to improve the products and processing techniques. In this regard, numerical modelling is highly applicable and in this work, a coupled meshfree particle-based two-dimensional (2-D) model was developed to simulate micro-scale deformations of plant cells during drying. Smoothed Particle Hydrodynamics (SPH) was used to model the viscous cell protoplasm (cell fluid) by approximating it to an incompressible Newtonian fluid. The visco-elastic characteristic of the cell wall was approximated to a Neo-Hookean solid material augmented with a viscous term and modelled with a Discrete Element Method (DEM). Compared to a previous work [H. C. P. Karunasena, W. Senadeera, Y. T. Gu and R. J. Brown, Appl. Math. Model., 2014], this study proposes three model improvements: linearly decreasing positive cell turgor pressure during drying, cell wall contraction forces and cell wall drying. The improvements made the model more comparable with experimental findings on dried cell morphology and geometric properties such as cell area, diameter, perimeter, roundness, elongation and compactness. This single cell model could be used as a building block for advanced tissue models which are highly applicable for product and process optimizations in Food Engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary Ti vectors are the plasmid vectors of choice in Agrobacterium-mediated plant transformation protocols. The pGreen series of binary Ti vectors are configured for ease-of-use and to meet the demands of a wide range of transformation procedures for many plant species. This plasmid system allows any arrangement of selectable marker and reporter gene at the right and left T-DNA borders without compromising the choice of restriction sites for cloning, since the pGreen cloning sites are based on the well-known pBluescript general vector plasmids. Its size and copy number in Escherichia coli offers increased efficiencies in routine in vitro recombination procedures. pGreen can replicate in Agrobacterium only if another plasmid, pSoup, is co-resident in the same strain. pSoup provides replication functions in trans for pGreen. The removal of RepA and Mob functions has enabled the size of pGreen to be kept to a minimum. Versions of pGreen have been used to transform several plant species with the same efficiencies as other binary Ti vectors. Information on the pGreen plasmid system is supplemented by an Internet site (http://www.pgreen.ac.uk) through which comprehensive information, protocols, order forms and lists of different pGreen marker gene permutations can be found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of transgenes in plant genomes can be inhibited by either transcriptional gene silencing or posttranscriptional gene silencing (PTGS). Overexpression of the chalcone synthase-A (CHS-A) transgene triggers PTGS of CHS-A and thus results in loss of flower pigmentation in petunia. We previously demonstrated that epigenetic inactivation of CHS-A transgene transcription leads to a reversion of the PTGS phenotype. Although neomycin phosphotransferase II (nptII), a marker gene co-introduced into the genome with the CHS-A transgene, is not normally silenced in petunia, even when CHS-A is silenced, here we found that nptII was silenced in a petunia line in which CHS-A PTGS was induced, but not in the revertant plants that had no PTGS of CHS-A. Transcriptional activity, accumulation of short interfering RNAs, and restoration of mRNA level after infection with viruses that had suppressor proteins of gene silencing indicated that the mechanism for nptII silencing was posttranscriptional. Read-through transcripts of the CHS-A gene toward the nptII gene were detected. Deep-sequencing analysis revealed a striking difference between the predominant size class of small RNAs produced from the read-through transcripts (22 nt) and that from the CHS-A RNAs (21 nt). These results implicate the involvement of read-through transcription and distinct phases of RNA degradation in the coincident PTGS of linked transgenes and provide new insights into the destabilization of transgene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant tissue has a complex cellular structure which is an aggregate of individual cells bonded by middle lamella. During drying processes, plant tissue undergoes extreme deformations which are mainly driven by moisture removal and turgor loss. Numerical modelling of this problem becomes challenging when conventional grid-based modelling techniques such as Finite Element Methods (FEM) and Finite Difference Methods (FDM) have grid-based limitations. This work presents a meshfree approach to model and simulate the deformations of plant tissues during drying. This method demonstrates the fundamental capabilities of meshfree methods in handling extreme deformations of multiphase systems. A simplified 2D tissue model is developed by aggregating individual cells while accounting for the stiffness of the middle lamella. Each individual cell is simply treated as consisting of two main components: cell fluid and cell wall. The cell fluid is modelled using Smoothed Particle Hydrodynamics (SPH) and the cell wall is modelled using a Discrete Element Method (DEM). During drying, moisture removal is accounted for by reduction of cell fluid and wall mass, which causes local shrinkage of cells eventually leading to tissue scale shrinkage. The cellular deformations are quantified using several cellular geometrical parameters and a favourably good agreement is observed when compared to experiments on apple tissue. The model is also capable of visually replicating dry tissue structures. The proposed model can be used as a step in developing complex tissue models to simulate extreme deformations during drying.