976 resultados para Introdouctory Programming, Tutoring, Feedback, eLearning, Program Annotations
Resumo:
The purpose of the present study was to determine which augmented sensory modality would best develop subjective error-detection capabilities of learners performing a spatial-temporal task when using a touch screen monitor. Participants were required to learn a 5-digit key-pressing task in a goal time of 2550 ms over 100 acquisition trials on a touch screen. Participants were randomized into 1 of 4 groups: 1) visual-feedback (colour change of button when selected), 2) auditory-feedback (click sound when button was selected), 3) visual-auditory feedback (both colour change and click sound when button was selected), and 4) no-feedback (no colour change or click sound when button was selected). Following each trial, participants were required to provide a subjective estimate regarding their performance time in relation to the actual time it took for them complete the 5-digit sequence. A no-KR retention test was conducted approximately 24-hours after the last completed acquisition trial. Results showed that practicing a timing task on a touch screen augmented with both visual and auditory information may have differentially impacted motor skill acquisition such that removal of one or both sources of augmented feedback did not result in a severe detriment to timing performance or error detection capabilities of the learner. The present study reflects the importance of multimodal augmented feedback conditions to maximize cognitive abilities for developing a stronger motor memory for subjective error-detection and correction capabilities.
Resumo:
Affiliation: Margaret Cargo : Département de médecine sociale et préventive, Faculté de médecine, Université de Montréal
Resumo:
Le Programme de formation de l’école québécoise situe l’élève au cœur de ses apprentissages. L’enseignant peut faciliter le développement des compétences en offrant une rétroaction permettant à l’élève de progresser dans ses apprentissages. Il est difficile pour les enseignants de faire des annotations pertinentes et efficaces en mathématique, car l’accent est mis sur le concept travaillé et non sur la démarche mathématique. C’est pourquoi, nous avons porté notre regard sur l’incidence que peut avoir l’enseignement explicite des stratégies ainsi que sur les annotations faites par l’enseignant sur les copies des élèves en ce qui a trait au développement de leurs compétences à résoudre des problèmes complexes en mathématique. Nous avons opté pour une recherche qualitative et collaborative pour vivre un échange avec l’enseignant et vivre une interinfluence entre le praticien et le chercheur. La qualité des sujets a été favorisée. La technique d’échantillonnage retenue pour le choix de l’enseignant a été celle de cas exemplaires, tandis que celle que nous avons choisie pour les élèves était l’échantillonnage intentionnel critérié. La recherche a duré du mois de novembre au mois de mai de l’année scolaire 2008-2009. Comme instruments de cueillette de données, nous avons opté pour des entrevues avec l’enseignant et des mini-entrevues avec les élèves à deux moments de la recherche. Nous avons consulté les travaux corrigés des élèves dans leur portfolio. Notre étude fait ressortir l’apport de l’enseignement stratégique de la démarche mathématique. Les résultats précisent que les annotations de type méthodologique ont été celles qui ont été les plus utilisées et ont permis une meilleure compréhension chez l’élève. De plus, elles favorisent le transfert d’une situation à l’autre et permettent à l’élève d’obtenir de meilleurs résultats.
Resumo:
Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.
Resumo:
Most Artificial Intelligence (AI) work can be characterized as either ``high-level'' (e.g., logical, symbolic) or ``low-level'' (e.g., connectionist networks, behavior-based robotics). Each approach suffers from particular drawbacks. High-level AI uses abstractions that often have no relation to the way real, biological brains work. Low-level AI, on the other hand, tends to lack the powerful abstractions that are needed to express complex structures and relationships. I have tried to combine the best features of both approaches, by building a set of programming abstractions defined in terms of simple, biologically plausible components. At the ``ground level'', I define a primitive, perceptron-like computational unit. I then show how more abstract computational units may be implemented in terms of the primitive units, and show the utility of the abstract units in sample networks. The new units make it possible to build networks using concepts such as long-term memories, short-term memories, and frames. As a demonstration of these abstractions, I have implemented a simulator for ``creatures'' controlled by a network of abstract units. The creatures exist in a simple 2D world, and exhibit behaviors such as catching mobile prey and sorting colored blocks into matching boxes. This program demonstrates that it is possible to build systems that can interact effectively with a dynamic physical environment, yet use symbolic representations to control aspects of their behavior.
Resumo:
In this session we look more closely at the way that Java deals with variables, and in particular with the differences between primitives (basic types like int and char) and objects. We also take an initial look at the scoping rules in Java, which dictate the visibility of variables in your program
Resumo:
In this session we look at the sorts of errors that occur in programs, and how we can use different testing and debugging strategies (such as unit testing and inspection) to track them down. We also look at error handling within the program and at how we can use Exceptions to manage errors in a more sophisticated way. These slides are based on Chapter 6 of the Book 'Objects First with BlueJ'
Resumo:
Event driven programming is a way of writing a program that works by responding to things happening (rather than executing a preplanned series of tasks). It is most often used to manage more advanced user interactions, such as GUI programs. In this session we look at how event driven programming works in Java GUIs, as both an introduction to events (using MouseListeners), and also to the way that GUI programs are constructed.
Resumo:
Speaker: Patrick McSweeney Organiser: Time: 15/10/2014 11:00-11:45 Location: B32/3077 Abstract Having started at Southampton in 2005 I have seen quite a few changes to the way courses are taught and studied. I will reflect on some of the interesting changes I have observed and suggest their causes. As a practical example I will talk about codestrom, a peer feedback tool for learning programming. We have found that this teaching method has improved the student experience and reduced the work load for the module team. Together we will discuss how this and other recent developments can enable other teaching innovations which benefit staff as well as students. Hopefully the new class of PhD students will be able to contribute from the point of view of having recently been undergraduate students here and else where.
Resumo:
Se pretende la elaboración una plataforma capaz de implementar sistemas de tutoría inteligente, orientada al problema de la adaptación del secuenciamiento; la creación de una herramienta o método que defina secuenciamientos adaptativos de material educativo; el desarrollo, empleando la herramienta anterior, de uno o más tutores y adaptar las técnicas de inteligencia de enjambre al campo de los cursos impartidos a través de Internet, Elearning.. En primer lugar se analiza el estado de la cuestión, destacando los aspectos novedosos. A continuación se presentan las aportaciones de la investigación. Por último, se exponen las conclusiones y las líneas de investigación abiertas. También se incluyen apéndices con información adicional que puede ser relevante para algunos lectores. Se investiga el uso de técnicas de inteligencia de enjambre para obtener sistemas educativos robustos y con capacidad de autoorganización. Las lecciones aprendidas de los sistemas cristalizan en la creación de un módulo para SIT.. Las principales contribuciones son: el diseño de una plataforma para el desarrollo de Sistemas de Tutoría Inteligentes (ITS); se presenta una herramienta para la adaptación de secuencias de unidades de aprendizaje, grafos de secuenciamiento (Sequencing Graphs, SG) y se analizan las iniciativas actuales relacionadas con las técnicas de enjambre en educación. Estas técnicas tienen un interés especial para los sistemas de elearning dada su complejidad. .
Resumo:
Would a research assistant - who can search for ideas related to those you are working on, network with others (but only share the things you have chosen to share), doesn’t need coffee and who might even, one day, appear to be conscious - help you get your work done? Would it help your students learn? There is a body of work showing that digital learning assistants can be a benefit to learners. It has been suggested that adaptive, caring, agents are more beneficial. Would a conscious agent be more caring, more adaptive, and better able to deal with changes in its learning partner’s life? Allow the system to try to dynamically model the user, so that it can make predictions about what is needed next, and how effective a particular intervention will be. Now, given that the system is essentially doing the same things as the user, why don’t we design the system so that it can try to model itself in the same way? This should mimic a primitive self-awareness. People develop their personalities, their identities, through interacting with others. It takes years for a human to develop a full sense of self. Nobody should expect a prototypical conscious computer system to be able to develop any faster than that. How can we provide a computer system with enough social contact to enable it to learn about itself and others? We can make it part of a network. Not just chatting with other computers about computer ‘stuff’, but involved in real human activity. Exposed to ‘raw meaning’ – the developing folksonomies coming out of the learning activities of humans, whether they are traditional students or lifelong learners (a term which should encompass everyone). Humans have complex psyches, comprised of multiple strands of identity which reflect as different roles in the communities of which they are part – so why not design our system the same way? With multiple internal modes of operation, each capable of being reflected onto the outside world in the form of roles – as a mentor, a research assistant, maybe even as a friend. But in order to be able to work with a human for long enough to be able to have a chance of developing the sort of rich behaviours we associate with people, the system needs to be able to function in a practical and helpful role. Unfortunately, it is unlikely to get a free ride from many people (other than its developer!) – so it needs to be able to perform a useful role, and do so securely, respecting the privacy of its partner. Can we create a system which learns to be more human whilst helping people learn?
Resumo:
Prenatal testosterone excess leads to neuroendocrine, ovarian, and metabolic disruptions, culminating in reproductive phenotypes mimicking that of women with polycystic ovary syndrome (PCOS). The objective of this study was to determine the consequences of prenatal testosterone treatment on periovulatory hormonal dynamics and ovulatory outcomes. To generate prenatal testosterone-treated females, pregnant sheep were injected intramuscularly (days 30-90 of gestation, term = 147 days) with 100 mg of testosterone-propionate in cottonseed oil semi-weekly. Female offspring born to untreated control females and prenatal testosterone-treated females were then studied during their first two breeding seasons. Sheep were given two injections of prostaglandin F-2alpha 11 days apart, and blood samples were collected at 2-h intervals for 120 h, 10-min intervals for 8 h during the luteal phase (first breeding season only), and daily for an additional 15 days to characterize changes in reproductive hormonal dynamics. During the first breeding season, prenatal testosterone-treated females manifested disruptions in the timing and magnitude of primary gonadotropin surges, luteal defects, and reduced responsiveness to progesterone negative feedback. Disruptions in the periovulatory sequence of events during the second breeding season included: 1) delayed but increased preovulatory estradiol rise, 2) delayed and severely reduced primary gonadotropin surge in prenatal testosterone-treated females having an LH surge, 3) tendency for an amplified secondary FSH surge and a shift in the relative balance of FSH regulatory proteins, and 4) luteal responses that ranged from normal to anovulatory. These outcomes are likely to be of relevance to developmental origin of infertility disorders and suggest that differences in fetal exposure or fetal susceptibility to testosterone may account for the variability in reproductive phenotypes.
Resumo:
In this paper we describe an exploratory assessment of the effect of aspect-oriented programming on software maintainability. An experiment was conducted in which 11 software professionals were asked to carry out maintenance tasks on one of two programs. The first program was written in Java and the second in AspectJ. Both programs implement a shopping system according to the same set of requirements. A number of statistical hypotheses were tested. The results did seem to suggest a slight advantage for the subjects using the object-oriented system since in general it took the subjects less time to answer the questions on this system. Also, both systems appeared to be equally difficult to modify. However, the results did not show a statistically significant influence of aspect-oriented programming at the 5% level. We are aware that the results of this single small study cannot be generalized. We conclude that more empirical research is necessary in this area to identify the benefits of aspect-oriented programming and we hope that this paper will encourage such research.
Resumo:
The University of Reading’s first Massive Open Online Course (MOOC) “Begin Programming: Build your first mobile game” (#FLMobiGame) was offered in Autumn 2013 on the FutureLearn platform. This course used a simple Android game framework to present basic programming concepts to complete beginners. The course attracted wide interest from all age groups. The course presented opportunities and challenges to both participants and educators. While some participants had difficulties accessing content some others had trouble grasping the concepts and applying them in a real program. Managing forums was cumbersome with the limited facilities supported by the Beta-platform. A healthy community was formed around the course with the support of social media. The case study reported here is part of an ongoing research programme exploring participants’ MOOC engagement and experience using a grounded, ethnographical approach.