985 resultados para Internal stress


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sea ice contains flaws including frictional contacts. We aim to describe quantitatively the mechanics of those contacts, providing local physics for geophysical models. With a focus on the internal friction of ice, we review standard micro-mechanical models of friction. The solid's deformation under normal load may be ductile or elastic. The shear failure of the contact may be by ductile flow, brittle fracture, or melting and hydrodynamic lubrication. Combinations of these give a total of six rheological models. When the material under study is ice, several of the rheological parameters in the standard models are not constant, but depend on the temperature of the bulk, on the normal stress under which samples are pressed together, or on the sliding velocity and acceleration. This has the effect of making the shear stress required for sliding dependent on sliding velocity, acceleration, and temperature. In some cases, it also perturbs the exponent in the normal-stress dependence of that shear stress away from the value that applies to most materials. We unify the models by a principle of maximum displacement for normal deformation, and of minimum stress for shear failure, reducing the controversy over the mechanism of internal friction in ice to the choice of values of four parameters in a single model. The four parameters represent, for a typical asperity contact, the sliding distance required to expel melt-water, the sliding distance required to break contact, the normal strain in the asperity, and the thickness of any ductile shear zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was conducted to determine the relationship among temperatures measured at different anatomical sites of the animal body and their daily pattern as indicative of the thermal stress in lactating dairy cows under tropical conditions. Environmental dry bulb (DBT) and black globe (BGT) temperatures and relative humidity (RH) were recorded. Rectal temperature (RT), respiratory frequency (RF), body surface (BST), internal base of tail (TT), vulva (VT) and auricular temperatures (AT) were collected, from 37 Black and White Holstein cows at 0700, 1300 and 1800 hours. RT showed a moderately and positive correlations with all body temperatures, ranging from 0.59 with TT to 0.64 with BST. Correlations among AT, VT and TT with RF were very similar (from 0.63 to 0.64) and were greater than those observed for RF with RT (0.55) or with BST (0.54). RF and RT were positively correlated to TT (0.63 and 0.59, respectively), AT (r = 0.63 for both) and VT (r = 0.64 and 0.63, respectively). Positive and very high correlations were observed among AT, VT and TT (from 0.94 to 0.97) indicating good association of temperatures measured in these anatomical sites. Correlations of BST with AT and VT were positive and very similar (0.71 and 0.72, respectively) and lower with TT (0.66). The AT, TT, VT and BST presented similar patterns and follow the variations of DBT through the day. Temperatures measured at different anatomical sites of the animal body have the potential to be used as indicative of the thermal stress in lactating dairy cows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model has been developed which describes the hot deformation and recrystallization behavior of austenite using a single internal variable: dislocation density. The dislocation density is incorporated into equations describing the rate of recovery and recrystallization. In each case no distinction is made between static and dynamic events, and the model is able to simulate multideformation processes. The model is statistically based and tracks individual populations of the dislocation density during the work-hardening and softening phases. After tuning using available data the model gave an accurate prediction of the stress–strain behavior and the static recrystallization kinetics for C–Mn steels. The model correctly predicted the sensitivity of the post deformation recrystallization behavior to process variables such as strain, strain rate and temperature, even though data for this were not explicitly incorporated in the tuning data set. In particular, the post dynamic recrystallization (generally termed metadynamic recrystallization) was shown to be largely independent of strain and temperature, but a strong function of strain rate, as observed in published experimental work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been noted that coaches face a number of challenges, frustrations, conflicts and tensions, most of which translate into perceived stress. With the re-entry of South Africa into the international sporting arena, little is known about South African coaches and what specific stresses they experience. Thus, the present study used a mixed-method approach in exploring the perceptions of stress among South African soccer coaches. More specifically, 12 South African coaches were interviewed (using semi-structured interview guides) on their perceptions of sources of stress. Furthermore, 112 soccer coaches (at the provincial level and higher) were approached to complete a 32-item questionnaire on the sources of stress related to their job as coaches. Content analysis was used to evaluate the qualitative data while the descriptive data analysis was completed using the Statistical Package for Social Sciences (SPSS – version 16). The reliability was tested for the sources of stress (a= .817) for the 32 items. The sources of stress experienced by the coaches were evaluated. The results revealed the three main themes related to sources of stress were Resource Issues, External Pressure and Internal Capacity. Complementing these results, the top three sources of stress found through the descriptive statistics were lack of resources, fixture backlog and games where the outcome is critical, while the lowest three sources of stress were political interference, physical assaults from players and substituting a player. Specific academic and practical implications of the study the results were discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper systematically examines the thermomechanical properties and phase transformation behaviour of slightly Ni-rich Ni-Ti biomedical shape memory wires containing homogeneously distributed nanoscale precipitates induced by stress-assisted ageing. In contrast to previous studies, particular attention is paid to the role of precipitates in impeding twin boundary movement (TBM) and its underlying mechanisms. The size and volume fraction of precipitates are altered by changing the ageing time. The martensitic transformation temperatures increase with prolonged ageing time, whereas the R-phase transformation temperature remains relatively unchanged. The stress-strain behaviour in different phase regions during both cooling and heating is comprehensively examined, and the underlying mechanisms for the temperature- and thermal-history-dependent behaviour are elucidated with the help of the established stress-temperature phase diagram. The effect of precipitates on TBM is explored by mechanical testing at 133K. It is revealed that the critical stress for TBM (σcr) increases with increasing ageing time. There is a considerable increase of 104MPa in σcr in the sample aged at 773K for 120min under 70MPa compared with the solution-treated sample, owing to the presence of precipitates. The Orowan strengthening model of twinning dislocations is insufficient to account for this increase in σcr. The back stress generation is the predominant mechanism for the interactions between precipitates and twin boundaries during TBM that give rise to the increase in σcr. Such results provide new insights into the thermomechanical properties of precipitate containing Ni-Ti biomedical shape memory wires, which are instructive for developing high-performance biomedical shape memory alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diferenças inter e intra-específicas na habilidade de suportar períodos de estresse nutricional podem dever-se à capacidade de armazenar e liberar íons dos vacúolos, e, ou, à intensidade de retranslocação de nutrientes em tais condições. Neste trabalho, pretendeu-se avaliar diferenças varietais quanto ao tamanho do pool não-metabólico de Pi; velocidade de liberação do Pi previamente armazenado (VLPi), quando o P citoplasmático cai a um valor limite; capacidade de transportar Pi de regiões menos ativas para aquelas mais ativas metabolicamente e definir compartimentos que são preferencialmente fontes e os que são preferencialmente drenos para o Pi, em condições de absorção limitada de P. Avaliaram-se a produção de matéria seca e os teores internos de Pi, orgânico (Po) e total solúvel em ácido (Pts), de diferentes órgãos de plantas dos cultivares de soja (Glycine max L. Merrill) Santa Rosa, Uberaba, IAC8, Doko e UFV1, submetidos a oito dias de omissão do elemento. A VLPi foi estimada como tangente às equações obtidas para Pi como função do perído de omissão no ponto médio do período de omissão em que houve maior decréscimo em Pi (zero a quatro dias de omissão de P), t = dois dias, considerando-se que -deltaPi/deltat expressa a velocidade de liberação de Pi. A capacidade interna de tamponamento de Pi (CTIPi) foi calculada como o inverso da VLPi. O cultivar Santa Rosa apresentou maior capacidade de armazenar Pi, quando o suprimento externo foi alto, liberando-o mais intensamente sob condições de baixo suprimento de P que os cultivares IAC8 e UFV1. O cultivar Uberaba mostrou-se superior ao Doko em sua habilidade de armazenar e utilizar o Pi. Folhas superiores mostraram ser o principal dreno para o Pi armazenado em folhas medianas e inferiores, seguidas por raízes e caules. Raízes comportaram-se como fontes ou drenos para o Pi. Raízes e folhas superiores apresentaram maiores (VLPi) e menores valores de CTIPi que folhas medianas e folhas inferiores, sendo o caule o compartimento com menor VLPi e maior CTIPi. Dentre as variedades, as diferenças foram pequenas, destacando-se a maior VLPi e menor CTIPi do cultivar Santa Rosa. O cultivar Doko apresentou a menor VLPi e maior CTIPi, enquanto Uberaba, IAC8 e UFV1 ocuparam posição intermediária quanto a essas características.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Residual stresses play an important role in the fatigue lives of structural engineering components. In the case of near surface tensile residual stresses, the initiation and propagation phases of fatigue process are accelerated; on the other hand, compressive residual stresses close to the surface may increase fatigue life. In both decorative and functional applications, chromium electroplating results in excellent wear and corrosion resistance. However, it is well known that it reduces the fatigue strength of a component. This is due to high tensile internal stresses and microcrack density. Efforts to improve hard chromium properties have increased in recent years. In this study, the effect of a nickel layer sulphamate process, as simple layer and interlayer, on fatigue strength of hard chromium electroplated AISI 4340 steel hardness - HRc 53, was analysed. The analysis was performed by rotating bending fatigue tests on AISI 4340 steel specimens with the following experimental groups: base material, hard chromium electroplated, sulphamate nickel electroplated, sulphamate nickel interlayer on hard chromium electroplated and electroless nickel interlayer on hard chromium electroplated. Results showed a decrease in fatigue strength in coated specimens and that both nickel plating interlayers were responsible for the increase in fatigue life of AISI 4340 chromium electroplated steel. The shot peening pre-treatment was efficient in reducing fatigue loss in the alternatives studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The aim of this study was to assess the influence of cusp inclination on stress distribution in implant-supported prostheses by 3D finite element method.Materials and Methods: Three-dimensional models were created to simulate a mandibular bone section with an implant (3.75 mm diameter x 10 mm length) and crown by means of a 3D scanner and 3D CAD software. A screw-retained single crown was simulated using three cusp inclinations (10 degrees, 20 degrees, 30 degrees). The 3D models (model 10d, model 20d, and model 30d) were transferred to the finite element program NeiNastran 9.0 to generate a mesh and perform the stress analysis. An oblique load of 200 N was applied on the internal vestibular face of the metal ceramic crown.Results: The results were visualized by means of von Mises stress maps. Maximum stress concentration was located at the point of application. The implant showed higher stress values in model 30d (160.68 MPa). Cortical bone showed higher stress values in model 10d (28.23 MPa).Conclusion: Stresses on the implant and implant/abutment interface increased with increasing cusp inclination, and stresses on the cortical bone decreased with increasing cusp inclination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Quantitative data from gene expression experiments are often normalized by transcription levels of reference or housekeeping genes. An inherent assumption for their use is that the expression of these genes is highly uniform in living organisms during various phases of development, in different cell types and under diverse environmental conditions. To date, the validation of reference genes in plants has received very little attention and suitable reference genes have not been defined for a great number of crop species including Coffea arabica. The aim of the research reported herein was to compare the relative expression of a set of potential reference genes across different types of tissue/organ samples of coffee. We also validated the expression profiles of the selected reference genes at various stages of development and under a specific biotic stress.Results: The expression levels of five frequently used housekeeping genes (reference genes), namely alcohol dehydrogenase (adh), 14-3-3, polyubiquitin (poly), beta-actin (actin) and glyceraldehyde-3-phosphate dehydrogenase (gapdh) was assessed by quantitative real-time RT-PCR over a set of five tissue/organ samples (root, stem, leaf, flower, and fruits) of Coffea arabica plants. In addition to these commonly used internal controls, three other genes encoding a cysteine proteinase (cys), a caffeine synthase (ccs) and the 60S ribosomal protein L7 (rpl7) were also tested. Their stability and suitability as reference genes were validated by geNorm, NormFinder and BestKeeper programs. The obtained results revealed significantly variable expression levels of all reference genes analyzed, with the exception of gapdh, which showed no significant changes in expression among the investigated experimental conditions.Conclusion: Our data suggests that the expression of housekeeping genes is not completely stable in coffee. Based on our results, gapdh, followed by 14-3-3 and rpl7 were found to be homogeneously expressed and are therefore adequate for normalization purposes, showing equivalent transcript levels in different tissue/ organ samples. Gapdh is therefore the recommended reference gene for measuring gene expression in Coffea arabica. Its use will enable more accurate and reliable normalization of tissue/organ-specific gene expression studies in this important cherry crop plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that the interstitial elements present in solid solution in metals interact with the matrix by a relaxation process known as stress induced ordering. Traditionally this relaxation process is observed in the internal friction measurements. It is a common practice that researchers present the results of the frequency together with internal friction without giving any analysis. In this work we apply an expression which relates the variation of frequency with temperature and analyse the experimental results cited in the literature of the relaxation process due to the stress induced ordering of oxygen and nitrogen present in niobium and tantalum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of interstitial elements in metals cause strong changes in their physical, chemical or mechanical properties. These interstitial impurities interact with the metallic matrix atoms by a relaxation process known as stress induced ordering. Relaxation processes give rise to a peak in the internal friction spectrum, known as Snock effect. The presence of substitutional solutes has a strong influence on Snoek effect, particularly if the substitutional solute element is the one, which interacts with the interstitial element. Anelastic spectroscopy measurements provide information of the behavior of these impurities in the metallic matrix. In this paper, polycrystalline samples of Nb-4.7 at.%Ta alloy have been analyzed in the as-received condition. Measurements of anelastic spectroscopy were carried out using an inverted torsion pendulum, operating with frequency of 2.0-30.0 Hz and in a temperature range between 300 and 700 K. It was observed the presence of a relaxation structure that have been attributed to stress induced ordering due to interstitial atoms around atoms of the metallic matrix. The relaxation structure have been decomposed in its constituent peaks, what it allowed to identify the following relaxation processes: Ta-O, Nb-O and Nb-N. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internal friction measurements were made in the Nb-Ti alloy containing 0.3 wt. % of Ti, doped with various quantities of oxygen (0.04 to 0.08 wt. %) utilizing a torsion pendulum. These measurements were performed in the temperature range of 300 K to 700 K with the oscillation frequency about 1.0 Hz. The experimental results showed relaxation peaks due the stress induced ordering of oxygen atom and pairs of oxygen atom around the niobium atoms (metallic matrix) and around titanium atoms (substitutional solute).