974 resultados para Intermediate filament


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ataxia-telangiectasia (AT) is an autosomal recessive human genetic disease characterized by immunological, neurological, and developmental defects and an increased risk of cancer. Cells from individuals with AT show sensitivity to ionizing radiation, elevated recombination, cell cycle abnormalities, and aberrant cytoskeletal organization. The molecular basis of the defect is unknown. A candidate AT gene (ATDC) was isolated on the basis of its ability to complement the ionizing radiation sensitivity of AT group D fibroblasts. Whether ATDC is mutated in any AT patients is not known. We have found that the ATDC protein physically interacts with the intermediate-filament protein vimentin, which is a protein kinase C substrate and colocalizing protein, and with an inhibitor of protein kinase C, hPKCI-1. Indirect immunofluorescence analysis of cultured cells transfected with a plasmid encoding an epitope-tagged ATDC protein localizes the protein to vimentin filaments. We suggest that the ATDC and hPKCI-1 proteins may be components of a signal transduction pathway that is induced by ionizing radiation and mediated by protein kinase C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Il est reconnu que la protéine filamenteuse intermédiaire Nestine est exprimée lors du processus de cicatrisation et du remodelage fibrotique. De plus, nous avons identifié l’expression de la Nestine au sein de deux populations distinctes qui sont directement impliquées dans les réponses de fibroses réparative et réactive. Ainsi, une population de cellules souches neurales progénitrices résidentes du coeur de rat adulte exprime la Nestine et a été identifiée à titre de substrat de l’angiogenèse et de la neurogenèse cardiaque. Également, la Nestine est exprimée par les myofibroblastes cicatriciels cardiaques et il a été établi que la protéine filamenteuse intermédiaire joue un rôle dans la prolifération de ces cellules. Ainsi, l’objectif général de cette thèse était de mieux comprendre les évènements cellulaires impliqués dans la réponse neurogénique des cellules souches neurales progénitrices résidentes cardiaques Nestine(+) (CSNPRCN(+)) lors de la fibrose réparative cardiaque et d’explorer si l’apparition de fibroblastes Nestine(+) est associée avec la réponse de fibrose réactive secondaire du remodelage pulmonaire. Une première publication nous a permis d’établir qu’il existe une régulation à la hausse de l’expression de la GAP43 (growth associated protein 43) et que cet événement transitoire précède l’acquisition d’un phénotype neuronal par les CSNPRCN(+) lors du processus de cicatrisation cardiaque chez le rat ayant subi un infarctus du myocarde. De plus, la surimposition de la condition diabétique de type 1, via l’injection unique de Streptozotocine chez le rat, abolit la réponse neurogénique des CSNPRCN(+), qui est normalement induite à la suite de l’ischémie cardiaque ou de l’administration de 6-hydroxydopamine. Le second article a démontré que le développement aigu de la fibrose pulmonaire secondaire de l’infarctus du myocarde chez le rat est associé avec une augmentation de l’expression protéique de la Nestine et de l’apparition de myofibroblastes pulmonaires Nestine(+). Également, le traitement de fibroblastes pulmonaires avec des facteurs de croissances peptidiques pro-fibrotiques a augmenté l’expression de la Nestine par ces cellules. Enfin, le développement initial de la condition diabétique de type 1 chez le rat est associé avec une absence de fibrose réactive pulmonaire et à une réduction significative des niveaux protéiques et d’ARN messager de la Nestine pulmonaire. Finalement, la troisième étude représentait quant à elle un prolongement de la deuxième étude et a alors examiné le remodelage pulmonaire chronique chez un modèle établi d’hypertension pulmonaire. Ainsi, les poumons de rats adultes mâles soumis à l’hypoxie hypobarique durant 3 semaines présentent un remodelage vasculaire, une fibrose réactive et une augmentation des niveaux d’ARN messager et de la protéine Nestine. De plus, nos résultats ont démontré que la Nestine, plutôt que l’alpha-actine du muscle lisse, est un marqueur plus approprié des diverses populations de fibroblastes pulmonaires activés. Également, nos données suggèrent que les fibroblastes pulmonaires activés proviendraient en partie de fibroblastes résidents, ainsi que des processus de transition épithélio-mésenchymateuse et de transition endothélio-mésenchymateuse. Collectivement, ces études ont démontré que des populations distinctes de cellules Nestine(+) jouent un rôle majeur dans la fibrose réparative cardiaque et la fibrose réactive pulmonaire.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Merkel cell carcinoma (MCC) is a rare aggressive skin tumor which shares histopathological and genetic features with small-cell lung carcinoma (SCLC), both are of neuroendocrine origin. Comparable to SCLC, MCC cell lines are classified into two different biochemical subgroups designated as 'Classic' and 'Variant'. With the aim to identify typical gene-expression signatures associated with these phenotypically different MCC cell lines subgroups and to search for differentially expressed genes between MCC and SCLC, we used cDNA arrays to pro. le 10 MCC cell lines and four SCLC cell lines. Using significance analysis of microarrays, we defined a set of 76 differentially expressed genes that allowed unequivocal identification of Classic and Variant MCC subgroups. We assume that the differential expression levels of some of these genes reflect, analogous to SCLC, the different biological and clinical properties of Classic and Variant MCC phenotypes. Therefore, they may serve as useful prognostic markers and potential targets for the development of new therapeutic interventions specific for each subgroup. Moreover, our analysis identified 17 powerful classifier genes capable of discriminating MCC from SCLC. Real-time quantitative RT-PCR analysis of these genes on 26 additional MCC and SCLC samples confirmed their diagnostic classification potential, opening opportunities for new investigations into these aggressive cancers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The c-Jun N-terminal kinases (JNKs) are members of a larger group of serine/ threonine (Ser/Thr) protein kinases from the mitogen-activated protein kinase family. JNKs were originally identified as stress-activated protein kinases in the livers of cycloheximide-challenged rats. Their subsequent purification, cloning, and naming as JNKs have emphasized their ability to phosphorylate and activate the transcription factor c-Jun. Studies of c-Jun and related transcription factor substrates have provided clues about both the preferred substrate phosphorylation sequences and additional docking domains recognized by JNK There are now more than 50 proteins shown to be substrates for JNK These include a range of nuclear substrates, including transcription factors and nuclear hormone receptors, heterogeneous nuclear ribonucleoprotein K and the Pol I-specific transcription factor TIF-IA, which regulates ribosome synthesis. Many nonnuclear substrates have also been characterized, and these are involved in protein degradation (e.g., the E3 ligase Itch), signal transduction (e.g., adaptor and scaffold proteins and protein kinases), apoptotic cell death (e.g., mitochondrial Bcl2 family members), and cell movement (e.g., paxillin, DCX, microtubule-associated proteins, the stathmin family member SCG10, and the intermediate filament protein keratin 8). The range of JNK actions in the cell is therefore likely to be complex. Further characterization of the substrates of JNK should provide clearer explanations of the intracellular actions of the JNKs and may allow new avenues for targeting the JNK pathways with therapeutic agents downstream of JNK itself.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The temporal lobe is a major site of pathology in a number of neurodegenerative diseases. In this chapter, the densities of the characteristic pathological lesions in various regions of the temporal lobe were compared in eight neurodegenerative disorders, viz., Alzheimer’s disease (AD), Down’s syndrome (DS), dementia with Lewy bodies (DLB), Pick’s disease (PiD), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), sporadic Creutzfeldt-Jakob disease (sCJD), and neuronal intermediate filament inclusion disease (NIFID). Temporal lobe pathology was observed in all of these disorders most notably in AD, DS, PiD, sCJD, and NIFID. The regions of the temporal lobe affected by the pathology, however, varied between disorders. In AD and DS, the greatest densities of ?-amyloid (A?) deposits were recorded in cortical regions adjacent to the hippocampus (HC), DS exhibiting greater densities of A? deposits than AD. Similarly, in sCJD, greatest densities of prion protein (PrPsc) deposits were recorded in cortical areas of the temporal lobe. In AD and PiD, significant densities of neurofibrillary tangles (NFT) and Pick bodies (PB) respectively were present in sector CA1 of the HC while in CBD, the greatest densities of tau-immunoreactive neuronal cytoplasmic inclusions (NCI) were present in the parahippocampal gyrus (PHG). Particularly high densities of PB were present in the DG in PiD, whereas NFT in AD and Lewy bodies (LB) in DLB were usually absent in this region. These data confirm that the temporal lobe is an important site of pathology in the disorders studied regardless of their molecular ‘signature’. However, disorders differ in the extent to which the pathology spreads to affect the HC which may account for some of the observed differences in clinical dementia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent research suggests cell-to-cell transfer of pathogenic proteins such as tau and α-synuclein may play a role in neurodegeneration. Pathogenic spread along neural pathways may give rise to specific spatial patterns of the neuronal cytoplasmic inclusions (NCI) characteristic of these disorders. Hence, the spatial patterns of NCI were compared in four tauopathies, viz., Alzheimer's disease, Pick's disease, corticobasal degeneration, and progressive supranuclear palsy, two synucleinopathies, viz., dementia with Lewy bodies and multiple system atrophy, the 'fused in sarcoma' (FUS)-immunoreactive inclusions in neuronal intermediate filament inclusion disease, and the transactive response DNA-binding protein (TDP-43)-immunoreactive inclusions in frontotemporal lobar degeneration, a TDP-43 proteinopathy (FTLD-TDP). Regardless of molecular group or morphology, NCI were most frequently aggregated into clusters, the clusters being regularly distributed parallel to the pia mater. In a significant proportion of regions, the regularly distributed clusters were in the size range 400-800 μm, approximating to the dimension of cell columns associated with the cortico-cortical pathways. The data suggest that cortical NCI in different disorders exhibit a similar spatial pattern in the cortex consistent with pathogenic spread along anatomical pathways. Hence, treatments designed to protect the cortex from neurodegeneration may be applicable across several different disorders. © 2012 Springer-Verlag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dentate gyrus (DG) is an important part of the hippocampal formation and is believed to be involved in a variety of brain functions including episodic and spatial memory and the exploration of novel environments. In several neurodegenerative disorders, significant pathology occurs in the DG which may be involved in the development of clinical dementia. Based on the abundance of pathological change, neurodegenerative disorders could be divided into three groups: (1) those in which high densities of neuronal cytoplasmic inclusions (NCI) were present in DG granule cells, e.g., Pick’s disease (PiD), frontotemporal lobar degeneration with TDP-43-immunoreactive inclusions (FTLD-TDP), and neuronal intermediate filament inclusion disease (NIFID), (2) those in which aggregated protein deposits were distributed throughout the hippocampal formation including the molecular layer of the DG, e.g., Alzheimer’s disease (AD), Down’s syndrome (DS), and variant Creutzfeldt-Jakob disease (vCJD), and (3) those in which in there was significantly less pathology in the DG, e.g., Parkinson’s disease dementia (PD-Dem), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), multiple system atrophy (MSA), and sporadic CJD (sCJD). Hence, DG pathology varied significantly among disorders which could contribute to differences in clinical dementia. Pathological differences among disorders could reflect either differential vulnerability of the DG to specific molecular pathologies or variation in the degree of spread of pathological proteins into the hippocampal formation from adjacent regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dentate gyrus (DG) is an important part of the hippocampal formation and is believed to be involved in a variety of brain functions including episodic and spatial memory and the exploration of novel environments. In several neurodegenerative disorders, significant pathology occurs in the DG which may be involved in the development of clinical dementia. Based on the abundance of pathological change, neurodegenerative disorders can be divided into three groups: (1) those in which high densities of neuronal cytoplasmic inclusions (NCI) are present in DG granule cells, e.g., Pick’s disease (PiD), frontotemporal lobar degeneration with TDP-43-immunoreactive inclusions (FTLD-TDP), and neuronal intermediate filament inclusion disease (NIFID), (2) those in which aggregated protein deposits are distributed throughout the hippocampal formation including the molecular layer of the DG, e.g., Alzheimer’s disease (AD), Down’s syndrome (DS), and variant Creutzfeldt-Jakob disease (vCJD), and (3) those in which in there is significantly less pathology in the DG, e.g., Parkinson’s disease dementia (PD-Dem), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), multiple system atrophy (MSA), and sporadic CJD (sCJD). Hence, DG pathology varies significantly among disorders which could contribute to differences in clinical dementia. Pathological differences among disorders could reflect either differential vulnerability of the DG to specific molecular pathologies or variation in the degree of spread of pathological proteins into the hippocampal formation from adjacent regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hippocampus (HC) and adjacent gyri are implicated in dementia in several neurodegenerative disorders. To compare HC pathology among disorders, densities of ‘signature’ pathological lesions were measured at a standard location in eight brain regions of 12 disorders. Principal components analysis of the data suggested that the disorders could be divided into three groups: (1) Alzheimer’s disease (AD), Down’s syndrome (DS), sporadic Creutzfeldt–Jakob disease, and variant Creutzfeldt–Jakob disease in which either β-amyloid (Aβ) or prion protein deposits were distributed in all sectors of the HC and adjacent gyri, with high densities being recorded in the parahippocampal gyrus and subiculum; (2) Pick’s disease, sporadic frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions, and neuronal intermediate filament inclusion disease in which relatively high densities of neuronal cytoplasmic inclusions were present in the dentate gyrus (DG) granule cells; and (3) Parkinson’s disease dementia, dementia with Lewy bodies, progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy in which densities of signature lesions were relatively low. Variation in density of signature lesions in DG granule cells and CA1 were the most important sources of neuropathological variation among disorders. Hence, HC and adjacent gyri are differentially affected in dementia reflecting either variation in vulnerability of hippocampal neurons to specific molecular pathologies or in the spread of pathological proteins to the HC. Information regarding the distribution of pathology could ultimately help to explain variations in different cognitive domains, such as memory, observed in various disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Degeneration of white matter fibre tracts occurs in several neurodegenerative disorders and results in various histological abnormalities including loss of axons, vacuolation, gliosis, axonal varicosities and spheroids, corpora amylacea, extracellular protein deposits, and glial inclusions (GI). This chapter describes quantitative studies that have been carried out on white matter pathology in a variety of neurodegenerative disease. First, in Alzheimer’s disease (AD), axonal loss quantified in histological sections stained with toluidine blue, occurs in several white matter fibre tracts including the optic nerve, olfactory tract, and corpus callosum. Second, in Creutzfeldt-Jakob disease (CJD), sections of cerebral cortex stained with haematoxylin and eosin (H/E) or immunolabelled with antibodies against the disease form of prion protein (PrPsc), reveal extensive vacuolation, gliosis of white matter, and deposition of PrPsc deposits. Third, GI immunolabelled with antibodies against various pathological proteins including tau, -synuclein, TDP-43, and FUS, have been recorded in white matter of a number of disorders including frontotemporal lobar degeneration (FTLD), progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and neuronal intermediate filament inclusion disease (NIFID). Axonal varicosities have also been observed in NIFID. There are two important questions regarding white matter pathology that need further investigation: (1) what is the relative importance of white and gray matter pathologies in different disorders and (2) do white matter abnormalities precede or are they the consequence of gray matter pathology?

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cardiomyopathies are a heterogeneous group of myocardial disorders defined by structural and functional alterations of the heart. These cardiac diseases can have both non-genetic and genetic origin. Nevertheless, a different etiology can trigger the same phenotype, as in the case of anthracycline-induced cardiotoxicity and desmin-related cardiomyopathy (DRM). Therefore, the aim of this study was to investigate the cellular mechanisms driving the development of these cardiotoxic conditions in in vitro models. Doxorubicin (DOX) is a commonly used antineoplastic drug for the treatment of a wide range of tumors. Besides, its clinical use is restricted because of dose-dependent cardiotoxicity. Our findings provided evidence that phospholipase C Beta 2 (PLCβ2) may have a critical role in DOX-induced cardiotoxicity in undifferentiated and differentiated H9c2 cell line. Interestingly, the results obtained revealed that cardiomyocytes are less sensitive to DOX, following the evaluation of cellular mechanisms such as: oxidative stress, apoptosis and cell proliferation. Nonetheless, the treatment induced a significant upregulation of PLCβ2 associated to morphological changes in both models, demonstrating the implication in a hypertrophic response. On the other hand, a hereditary DRM was associated to a missense mutation of aB crystallin (CRYAB), a chaperone protein involved in the regulation of the intermediate filament network. Since research has only been conducted on transgenic (TG) mice and neonatal rat cardiomyocytes, this study aimed at investigating cellular mechanisms triggered by CRYABR120G mutation in a hiPSC-derived DRM model. Our model confirmed the impairment of the cytoskeletal organization resulting in the formation of desmin and CRYAB aggregates and myofibril misalignment. Moreover, the missense mutation confirmed a hypertrophic cardiomyopathy phenotype, a feature of DRM patients, on cardiac engineered tissues. Lastly, these data obtained suggest that further research on PLCβ2 and CRYAB are needed to comprehend the molecular mechanisms behind the development of these 2 cardiac diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have suggested that abnormal corneal wound healing in patients after photorefractive keratectomy (PRK) is associated with the appearance of myofibroblasts in the stroma between two and four weeks after surgery. The purpose of this study was to examine potential myofibroblast progenitor cells that might express other filament markers prior to completion of the differentiation pathway that yields alpha-smooth muscle actin (SMA)-expressing myofibroblasts associated with haze localized beneath the epithelial basement membrane after PRK. Twenty-four female rabbits that had -9 diopter PRK were sacrificed at 1 week, 2 weeks, 3 weeks or 4 weeks after surgery. Corneal rims were collected, frozen at -80 degrees C, and analyzed by immunocytochemistry using anti-vimentin, anti-desmin, and anti-SMA antibodies. Double immunostaining was performed for the co-localization of SMA with vimentin or desmin with SMA. An increase in vimentin expression in stromal cells is noted as early as 1 week after PRK in the rabbit cornea. As the healing response continues at two or three weeks after surgery, many stromal cells expressing vimentin also begin to express desmin and SMA. By 4 weeks after the surgery most, if not all, myofibroblasts express vimentin, desmin and SMA. Generalized least squares regression analysis showed that there was strong evidence that each of the marker groups differed in expression over time compared to the other two (p < 0.01). Intermediate filaments - vimentin and desmin co-exist in myofibroblasts along with SMA and may play an important role in corneal remodeling after photorefractive keratectomy. The earliest precursors of myofibroblasts destined to express SMA and desmin are detectible by staining for vimentin at 1 week after surgery. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have suggested that abnormal corneal wound healing in patients after photorefractive keratectomy (PRK) is associated with the appearance of myofibroblasts in the stroma between two and four weeks after surgery. The purpose of this study was to examine potential myofibroblast progenitor cells that might express other filament markers prior to completion of the differentiation pathway that yields a-smooth muscle actin (SMA)-expressing myofibroblasts associated with haze localized beneath the epithelial basement membrane after PRK. Twenty-four female rabbits that had -9 diopter PRK were sacrificed at I week, 2 weeks, 3 weeks or 4 weeks after surgery. Corneal rims were collected, frozen at -80 degrees C, and analyzed by immunocytochemistry using anti-vimentin, anti-desmin, and anti-SMA antibodies. Double immunostaining was performed for the co-localization of SMA with vimentin or desmin with SMA. An increase in vimentin expression in stromal cells is noted as early as 1 week after PRK in the rabbit cornea. As the healing response continues at two or three weeks after surgery, many stromal cells expressing vimentin also begin to express desmin and SMA. By 4 weeks after the surgery most, if not all, myofibroblasts express vimentin, desmin and SMA. Generalized least squares regression analysis showed that there was strong evidence that each of the marker groups differed in expression over time compared to the other two (p < 0.01). Intermediate filaments - vimentin and desmin co-exist in myofibroblasts along with SMA and may play an important role in corneal remodeling after photorefractive keratectomy. The earliest precursors of myofibroblasts destined to express SMA and desmin are detectible by staining for vimentin at I week after surgery. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Translesion replication is carried out in Escherichia coli by the SOS-inducible DNA polymerase V (UmuC), an error-prone polymerase, which is specialized for replicating through lesions in DNA, leading to the formation of mutations. Lesion bypass by pol V requires the SOS-regulated proteins UmuD' and RecA and the single-strand DNA-binding protein (SSB). Using an in vitro assay system for translesion replication based on a gapped plasmid carrying a site-specific synthetic abasic site, we show that the assembly of a RecA nucleoprotein filament is required for lesion bypass by pol V. This is based on the reaction requirements for stoichiometric amounts of RecA and for single-stranded gaps longer than 100 nucleotides and on direct visualization of RecA-DNA filaments by electron microscopy. SSB is likely to facilitate the assembly of the RecA nucleoprotein filament; however, it has at least one additional role in lesion bypass. ATPgammaS, which is known to strongly increase binding of RecA to DNA, caused a drastic inhibition of pol V activity. Lesion bypass does not require stoichiometric binding of UmuD' along RecA filaments. In summary, the RecA nucleoprotein filament, previously known to be required for SOS induction and homologous recombination, is also a critical intermediate in translesion replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The A1763 superstructure at z = 0.23 contains the first galaxy filament to be directly detected using mid-infrared observations. Our previous work has shown that the frequency of starbursting galaxies, as characterized by 24 mu m emission is much higher within the filament than at either the center of the rich galaxy cluster, or the field surrounding the system. New Very Large Array and XMM-Newton data are presented here. We use the radio and X-ray data to examine the fraction and location of active galaxies, both active galactic nuclei (AGNs) and starbursts (SBs). The radio far-infrared correlation, X-ray point source location, IRAC colors, and quasar positions are all used to gain an understanding of the presence of dominant AGNs. We find very few MIPS-selected galaxies that are clearly dominated by AGN activity. Most radio-selected members within the filament are SBs. Within the supercluster, three of eight spectroscopic members detected both in the radio and in the mid-infrared are radio-bright AGNs. They are found at or near the core of A1763. The five SBs are located further along the filament. We calculate the physical properties of the known wide angle tail (WAT) source which is the brightest cluster galaxy of A1763. A second double lobe source is found along the filament well outside of the virial radius of either cluster. The velocity offset of the WAT from the X-ray centroid and the bend of the WAT in the intracluster medium are both consistent with ram pressure stripping, indicative of streaming motions along the direction of the filament. We consider this as further evidence of the cluster-feeding nature of the galaxy filament.