944 resultados para Interleukin-2 Production
Resumo:
Weekly injections of Concanavalin A (Con A) were performed in BALB/c mice to evaluate the pattern of cytokine production and liver injury. High serum levels of tumor necrosis factor alpha (TNF-alpha), interleukin 2 (IL-2), IL-4, and interferon gamma (IFN-gamma) were found in the serum after the first 2 injections of Con A but rapidly decreased from the third injection. Conversely, IL-10 serum levels after repeated Con A challenge increased by 7 times from week 1 to 20. In vivo depletion studies indicated that CD4(+) T cells are essential in IL-10 production. Hepatocyte necrosis was only observed after the first injections of Con A whereas centrilobular inflammatory infiltrates persisted up to 20 weeks. Perisinusoidal liver fibrosis was also increasingly detected in BALB/c mice, whereas no fibrous change was observed in nude mice after 6 weeks of Con A challenge. The number of stellate cells, detected by immunostaining, increased after 20 weeks of Con A injections. Liver cytokine messenger RNA (mRNA) expression after 20 weeks showed expression of transforming growth factor beta1 (TGF-beta1), IL-10, and IL-4 whereas IL-2 was no more expressed. The present study shows that mice repeatedly injected with Con A develop liver fibrosis. The cytokine-release pattern observed after 1 injection of Con A is rapidly shifted towards an immunomodulatory phenotype characterized by the systemic production of large amounts of IL-10.
Resumo:
We have shown previously that a fetal sheep liver extract (FSLE) containing significant quantities of fetal ovine gamma globin chain (Hbgamma) and LPS injected into aged (>20 months) mice could reverse the altered polarization (increased IL-4 and IL-10 with decreased IL-2 and IFNgamma) in cytokine production seen from ConA stimulated lymphoid cells of those mice. The mechanism(s) behind this change in cytokine production were not previously investigated. We report below that aged mice show a >60% decline in numbers and suppressive function of both CD4(+)CD25(+)Foxp3(+) Treg and so-called Tr3 (CD4(+)TGFbeta(+)), and that their number/function is restored to levels seen in control (8-week-old) mice by FSLE. In addition, on a per cell basis, CD4(+)CD25(-)Treg from aged mice were >4-fold more effective in suppression of proliferation and IL-2 production from ConA-activated lymphoid cells of a pool of CD4(+)CD25(-)T cells from 8-week-old mice than similar cells from young animals, and this suppression by CD25(-)T cells was also ameliorated following FSLE treatment. Infusion of anti-TGFbeta and anti-IL-10 antibodies in vivo altered Treg development following FSLE treatment, and attenuated FSLE-induced alterations in cytokine production profiles.
Resumo:
Upon infection, antigen-specific naive CD8 T cells are activated and differentiate into short-lived effector cells (SLECs) and memory precursor cells (MPECs). The underlying signaling pathways remain largely unresolved. We show that Rictor, the core component of mammalian target of rapamycin complex 2 (mTORC2), regulates SLEC and MPEC commitment. Rictor deficiency favors memory formation and increases IL-2 secretion capacity without dampening effector functions. Moreover, mTORC2-deficient memory T cells mount more potent recall responses. Enhanced memory formation in the absence of mTORC2 was associated with Eomes and Tcf-1 upregulation, repression of T-bet, enhanced mitochondrial spare respiratory capacity, and fatty acid oxidation. This transcriptional and metabolic reprogramming is mainly driven by nuclear stabilization of Foxo1. Silencing of Foxo1 reversed the increased MPEC differentiation and IL-2 production and led to an impaired recall response of Rictor KO memory T cells. Therefore, mTORC2 is a critical regulator of CD8 T cell differentiation and may be an important target for immunotherapy interventions.
Resumo:
Pseudomonas aeruginosa, a major lung pathogen in cystic fibrosis (CF) patients, secretes an elastolytic metalloproteinase (EPa) contributing to bacterial pathogenicity. Proteinase-activated receptor 2 (PAR2), implicated in the pulmonary innate defense, is activated by the cleavage of its extracellular N-terminal domain, unmasking a new N-terminal sequence starting with SLIGKV, which binds intramolecularly and activates PAR2. We show that EPa cleaves the N-terminal domain of PAR2 from the cell surface without triggering receptor endocytosis as trypsin does. As evaluated by measurements of cytosolic calcium as well as prostaglandin E(2) and interleukin-8 production, this cleavage does not activate PAR2, but rather disarms the receptor for subsequent activation by trypsin, but not by the synthetic receptor-activating peptide, SLIGKV-NH(2). Proteolysis by EPa of synthetic peptides representing the N-terminal cleavage/activation sequences of either human or rat PAR2 indicates that cleavages resulting from EPa activity would not produce receptor-activating tethered ligands, but would disarm PAR2 in regard to any further activating proteolysis by activating proteinases. Our data indicate that a pathogen-derived proteinase like EPa can potentially silence the function of PAR2 in the respiratory tract, thereby altering the host innate defense mechanisms and respiratory functions, and thus contributing to pathogenesis in the setting of a disease like CF.
Resumo:
Background: the effect of triclosan plus the cationic detergent cetylpyridinium chloride (CPC) was evaluated for prostaglandin inhibition in human gingival fibroblasts. Since triclosan has previously been shown to inhibit proinflammatory cytokine induced prostaglandin E-2 (PGE(2)) production, we wanted to determine if triclosan, in the presence of CPC, could enhance these effects.Methods: Initial studies determined that both triclosan and CPC were cytotoxic to human gingival fibroblasts in concentrations exceeding 1.0 mu g/ml for either agent longer than 24 hours in a tissue culture. Therefore, subsequent studies measuring prostaglandin biosynthesis and cyclooxygenase (COX)-1 and COX-2 mRNA expression were performed in concentrations and times that did not significantly affect cell viability.Results: PGE2 biosynthesis was dose dependently inhibited by both triclosan and triclosan and CPC when challenged by tumor necrosis factor (TNF)-alpha or interleukin (IL)-1 beta. At pharmacologically relevant concentrations, triclosan and CPC inhibited ILAP-induced PGE(2) production to a greater extent than triclosan alone (P = 0.02). Moreover, enhanced COX-2 mRNA repression was observed with triclosan and CPC in comparison to triclosan alone in IL-1 beta and TNF-alpha stimulated cells. No effect on COX-I gene expression was observed. Further analysis of cell signaling mechanisms of triclosan and CPC indicates that nuclear factor-kappa B (NF-kappa B) and not p38 mitogen-activated protein kinase (MAPK) signaling may be impaired in the presence of triclosan and CPC.Conclusion: This study indicates that triclosan and CPC are more effective at inhibiting PGE(2) at the level of COX-2 gene regulation, and this combination may offer a potentially better anti -inflammatory agent in the treatment of inflammatory lesions in the oral cavity.
Resumo:
Background: Arterial peripheral disease is a condition caused by the blocked blood flow resulting from arterial cholesterol deposits within the arms, legs and aorta. Studies have shown that macrophages in atherosclerotic plaque are highly activated, which makes these cells important antigen-presenting cells that develop a specific immune response, in which LDLox is the inducing antigen. As functional changes of cells which participate in the atherogenesis process may occur in the peripheral blood, the objectives of the present study were to evaluate plasma levels of anti-inflammatory and inflammatory cytokines including TNF-alpha, IFN-gamma, interleukin-6 (IL-6), IL-10 and TGF-beta in patients with peripheral arteriosclerosis obliterans, to assess the monocyte activation level in peripheral blood through the ability of these cells to release hydrogen peroxide (H(2)O(2)) and to develop fungicidal activity against Candida albicans (C. albicans) in vitro.Methods: TNF-alpha, IFN-gamma, IL-6, IL-10 and TGF-beta from plasma of patients were detected by ELISA. Monocyte cultures activated in vitro with TNF-alpha and IFN-gamma were evaluated by fungicidal activity against C. albicans by culture plating and Colony Forming Unit (CFU) recovery, and by H(2)O(2) production.Results: Plasma levels of all cytokines were significantly higher in patients compared to those detected in control subjects. Control group monocytes did not release substantial levels of H(2)O(2) in vitro, but these levels were significantly increased after activation with IFN-gamma and TNF-alpha. Monocytes of patients, before and after activation, responded less than those of control subjects. Similar results were found when fungicidal activity was evaluated. The results seen in patients were always significantly smaller than among control subjects. Conclusions: The results revealed an unresponsiveness of patient monocytes in vitro probably due to the high activation process occurring in vivo as corroborated by high plasma cytokine levels.
Resumo:
Plasmodium chabaudi infection induces a rapid and intense splenic CD4(+) T cell response that contributes to both disease pathogenesis and the control of acute parasitemia. The subsequent development of clinical immunity to disease occurs concomitantly with the persistence of low levels of chronic parasitemia. The suppressive activity of regulatory T (T-reg) cells has been implicated in both development of clinical immunity and parasite persistence. To evaluate whether IL-2 is required to induce and to sustain the suppressive activity of T-reg cells in malaria, we examined in detail the effects of anti-IL-2 treatment with JES6-1 monoclonal antibody (mAb) on the splenic CD4(+) T cell response during acute and chronic P. chabaudi AS infection in C57BL/6 mice. JES6-1 treatment on days 0, 2 and 4 of infection partially inhibits the expansion of the CD4(+)CD25(+)Foxp3(+) cell population during acute malaria. Despite the concomitant secretion of IL-2 and expression of high affinity IL-2 receptor by large CD4(+) T cells, JES6-1 treatment does not impair effector CD4+ T cell activation and IFN-gamma production. However, at the chronic phase of the disease, an enhancement of cellular and humoral responses occurs in JES6-1-treated mice, with increased production of TNF-alpha and parasite-specific IgG2a antibodies. Furthermore, JES6-1 mAb completely blocked the in vitro proliferation of CD4(+) T cells from non-treated chronic mice, while it further increased the response of CD4(+) T cells from JES6-1-treated chronic mice. We conclude that JES6-1 treatment impairs the expansion of T-reg cell population during early P. chabaudi malaria and enhances the Th1 cell response in the late phase of the disease.
Resumo:
Die Ursachen für die Entstehung von Lungentumoren sind vielseitig. Aus geschädigtem Drüsengewebe der Lunge kann sich die Tumorart des Adenokarzinoms entwickeln, welches zu den malignen Krebserkrankungen gehört und somit nach Etablierung eines Primärtumors metastasieren kann. Es wurde vielfach gezeigt, daß das Immunsystem bei der Bekämpfung eines mutierten Gewebes im fortschreitenden Verlauf des Tumorwachstums an Effektivität verliert. Die dahinter stehenden Mechanismen sind noch nicht ganz verstanden. Eine mögliche Ursache könnte eine fehlerhafte Regulation der Immunabwehr sein. Das Zytokin, welches bei dieser Regulation eine wichtige Rolle spielt, ist das Interleukin-2 (IL-2). Dieses aktiviert immunkompetente Zellen und gewährleistet deren Fortbestand während der Immunreaktion. In der vorliegenden Arbeit ist in einem murinen Modell von Bronchioadenokarzinom die Regulation von CD4+ T-Zellen durch IL-2 untersucht worden, beziehungsweise inwieweit eine Einflußnahme auf diese Regulation zur Verbesserung der Tumorabwehr beitragen kann. Die alpha-Kette des IL-2 Rezeptorkomplexes (CD25) ist neben dem Transkriptionsfaktor Foxp3 ein gängiger Marker für die Population der so genannten regulatorischen T-Zellen. Regulatorische T-Zellen treten im Tumorgewebe in erhöhtem Maße auf und inhibieren die gegen den Tumor gerichtete Effektorfunktion anderer Immunzellen. Durch intranasale Applikation eines anti-CD25 Antikörpers sollte, im speziellen bei den regulatorischen T-Zellen, das CD25 Molekül blockiert werden, um auf diese Weise die hochaffine Signalgebung zu unterbinden und die regulatorischen T-Zellen intratumoral zu depletieren. Es konnte gezeigt werden, daß die Blockade des IL-2 Rezeptors nicht zur Reduktion des Tumorwachstums beitrug. Trotz Applikation des Antikörpers waren die regulatorischen T-Zellen signifikant erhöht. Lediglich die Produktion des Zytokins Tumornekrosisfaktor-alpha (TNF-alpha) wurde durch die Zugabe des Antikörpers gesteigert, was aber keine Verbesserung der Tumorabwehr bewirkte. Als Alternative zur Blockade des IL-2 Rezeptors wurden verschiedene Dosen von rekombinantem IL-2 ebenfalls intranasal appliziert, um die T-Zell Populationen zusätzlich zu stimulieren. In diesem Fall war bei hohen Dosierungen eine Regression des Tumors zu erreichen. Die Regression ist auf eine erhöhte, durch das IL-2 aktivierte Produktion des Zytokins Interferon-gamma (IFN-gamma) zurückzuführen. Jedoch wurde sowohl bei der Blockade des IL-2 Rezeptors, als auch bei der Stimulation durch IL-2 ersichtlich, daß im Zusammenhang mit Adenokarzinom dem Zytokin TNF-alpha eine besondere Position zugedacht werden muß. Es ist bekannt, daß TNF-alpha in verschiedenen experimentellen Tumor-Modellen unterschiedliche Funktionen besitzt. Die Deletion des TNFs, hier dargestellt mittels TNF-knockout Mäusen, hatte eine kurative Wirkung. Die TNF-knockout Mäuse wiesen fast kein Tumorwachstum auf, die CD4+ T-Zellen aus den knockout Mäusen zeigten eine im Vergleich zum Wildtyp mehrfach höhere Produktion von IFN-gamma, bei gleichzeitiger Reduktion der regulatorischen T-Zellen. Es kann vermutet werden, daß TNF-alpha in dem verwendeten Adenokarzinom-Modell eine tumorunterstützende Wirkung hat. Dahingehend wäre die Neutralisierung der TNF-Signalgebung bei zusätzlicher Stimulation mit IL-2 als wirksamer Therapieansatz in Betracht zu ziehen.
Resumo:
BCL-2-deficient T cells demonstrate accelerated cell cycle progression and increased apoptosis following activation. Increasing the levels of BCL-2 retarded the G0-->S transition, sustained the levels of cyclin-dependent kinase inhibitor p27Kip1, and repressed postactivation death. Proximal signal transduction events and immediate early gene transcription were unaffected. However, the transcription and synthesis of interleukin 2 and other delayed early cytokines were markedly attenuated by BCL-2. In contrast, a cysteine protease inhibitor that also blocks apoptosis had no substantial affect upon cytokine production. InterleUkin 2 expression requires several transcription factors of which nuclear translocation of NFAT (nuclear factor of activated T cells) and NFAT-mediated transactivation were impaired by BCL-2. Thus, select genetic aberrations in the apoptotic pathway reveal a cell autonomous coregulation of activation.
Resumo:
The expression of the cell adhesion molecules ICAM-1, ICAM-2, and VCAM-1 and the secretion of the cytokine interleukin 6 have been measured in mouse Sertoli cells cultured in vitro. Cytometric analysis revealed that, in basal conditions, low levels of ICAM-1 and VCAM-1 were present on the surface of the cells, whereas treatment with interleukin 1, tumor necrosis factor alpha, lipopolysaccharide, or interferon gamma induced, with different kinetics, increases in their expression. ICAM-2 was not detectable in basal conditions, nor was it inducible. Electron microscopic analysis and binding experiments using 51Cr-labeled lymphocytes demonstrated that increased expression of ICAM-1 and VCAM-1 on the surface of Sertoli cells, induced by inflammatory mediators, determines an augmented adhesion between the two cell types. The same stimuli, with the exception of interferon gamma, produced a rapid and remarkable increment of interleukin 6 production by Sertoli cells. These results suggest the presence of both direct and paracrine mechanisms of interaction between Sertoli and immune-competent cells, possibly involved in the control of immune reactions in the testis. Such mechanisms are of interest for the understanding of autoimmune pathologies of the testis and, if confirmed in humans, they could be involved in the sexual transmission of human immunodeficiency virus infection.
Resumo:
Foxp3(+)CD25(+)CD4(+) regulatory T cells are vital for peripheral tolerance and control of tissue inflammation. In this study, we characterized the phenotype and monitored the migration and activity of regulatory T cells present in the airways of allergic or tolerant mice after allergen challenge. To induce lung allergic inflammation, mice were sensitized twice with ovalbumin/aluminum hydroxide gel and challenged twice with intranasal ovalbumin. Tolerance was induced by oral administration of ovalbumin for 5 consecutive days prior to OVA sensitization and challenge. We detected regulatory T cells (Foxp3(+)CD25(+)CD4(+) T cells) in the airways of allergic and tolerant mice; however, the number of regulatory T cells was more than 40-fold higher in allergic mice than in tolerant mice. Lung regulatory T cells expressed an effector/memory phenotype (CCR4(high)CD62L(low)CD44(high)CD54(high)CD69(+)) that distinguished them from naive regulatory T cells (CCR4(int)CD62L(high)CD44(int)CD54(int)CD69(-)). These regulatory T cells efficiently suppressed pulmonary T-cell proliferation but not Th2 cytokine production.
Resumo:
In human systemic lupus erythematosus (SLE), diverse autoantibodies accumulate over years before disease manifestation. Unaffected relatives of SLE patients frequently share a sustained production of autoantibodies with indiscriminable specificity, usually without ever acquiring the disease. We studied relations of IgG autoantibody profiles and peripheral blood activated regulatory T-cells (aTregs), represented by CD4(+)CD25(bright) T-cells that were regularly 70-90% Foxp3(+). We found consistent positive correlations of broad-range as well as specific SLE-associated IgG with aTreg frequencies within unaffected relatives, but not patients or unrelated controls. Our interpretation: unaffected relatives with shared genetic factors compensated pathogenic effects by aTregs engaged in parallel with the individual autoantibody production. To study this further, we applied a novel analytic approach named coreferentiality that tests the indirect relatedness of parameters in respect to multivariate phenotype data. Results show that independently of their direct correlation, aTreg frequencies and specific SLE-associated IgG were likely functionally related in unaffected relatives: they significantly parallelled each other in their relations to broad-range immunoblot autoantibody profiles. In unaffected relatives, we also found coreferential effects of genetic variation in the loci encoding IL-2 and CD25. A model of CD25 functional genetic effects constructed by coreferentiality maximization suggests that IL-2-CD25 interaction, likely stimulating aTregs in unaffected relatives, had an opposed effect in SLE patients, presumably triggering primarily T-effector cells in this group. Coreferentiality modeling as we do it here could also be useful in other contexts, particularly to explore combined functional genetic effects.
Resumo:
The link between chronic immune activation and tumorigenesis is well established. Compelling evidence has accumulated that histologic assessment of infiltration patterns of different host immune response components in non-small cell lung cancer specimens helps identify different prognostic patient subgroups. This review provides an overview of recent insights gained in the understanding of the role played by chronic inflammation in lung carcinogenesis. The usefulness of quantification of different populations of lymphocytes, natural killer cells, macrophages, and mast cells within the tumor microenvironment in non-small cell lung cancer is also discussed. In particular, the importance of assessment of inflammatory cell microlocalization within both the tumor islet and surrounding stromal components is emphasized. Copyright © 2010 by the International Association for the Study of Lung Cancer.
Resumo:
The epidermal growth factor receptor (EGFR) is part of a family of plasma membrane receptor tyrosine kinases that control many important cellular functions, from growth and proliferation to cell death. Cyclooxygenase (COX)-2 is an enzyme which catalyses the conversion of arachidonic acid to prostagladins and thromboxane. It is induced by various inflammatory stimuli, including the pro-inflammatory cytokines, Interleukin (IL)-1β, Tumour Necrosis Factor (TNF)-α and IL-2. Both EGFR and COX-2 are over-expressed in non-small cell lung cancer (NSCLC) and have been implicated in the early stages of tumourigenesis. This paper considers their roles in the development and progression of lung cancer, their potential interactions, and reviews the recent progress in cancer therapies that are directed toward these targets. An increasing body of evidence suggests that selective inhibitors of both EGFR and COX-2 are potential therapeutic agents for the treatment of NSCLC, in the adjuvant, metastatic and chemopreventative settings. © 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Matrix metalloproteinase-2 (MMP-2), a zymogen requiring proteolytic activation for catalytic activity, has been implicated broadly in the invasion and metastasis of many cancer model systems, including human breast cancer (HBC). MMP-2 has been immunolocalized to carcinomatous human breast, where the degree of activation of MMP-2 correlates well with tumor grade and patient prognosis. Using Matrigel assays, we have stratified HBC cell lines for invasiveness in vitro, and compared this to their potential for metastatic spread in nude mice. HBC cell lines expressing the mesenchymal marker protein vimentin were found to be highly invasive in vitro, and tended to form metastases in nude mice. We have further discovered that culture on collagen-I gels (Vitrogen(TM): Vg) induces MMP-2-activator in highly invasive but not poorly invasive HBC cell lines. As seen for other MMP-2-activator inducing regimens, this induction requires protein synthesis and an intact MMP-2 hemopexin-like domain, appears to be mediated by a cell surface activity, and can be inhibited by metalloproteinase inhibitors. The induction is highly specific to collagen I, and is not seen with thin coatings of collagen I, collagen IV, laminin, or fibronectin, or with 3-dimensional gels of laminin, Matrigel, or gelatin. This review focuses on collagen I and MMP- 2, their localization and source in HBC, and their relationship(s) to MMP-2 activation and HBC metastasis. The relevance of collagen I in activation of MMP-2 in vivo is discussed in terms of stromal cell: tumor cell interaction for collagen I deposition, MMP-2 production and MMP-2-activation. Such cooperativity may exist in vivo for MMP-2 participation in HBC dissemination. A more complete understanding of the regulation of MMP-2-activator by type I collagen may provide new avenues for improved diagnosis and prognosis of human breast cancer.