1000 resultados para Interactions protéiques
Resumo:
The three-component reaction-diffusion system introduced in [C. P. Schenk et al., Phys. Rev. Lett., 78 (1997), pp. 3781–3784] has become a paradigm model in pattern formation. It exhibits a rich variety of dynamics of fronts, pulses, and spots. The front and pulse interactions range in type from weak, in which the localized structures interact only through their exponentially small tails, to strong interactions, in which they annihilate or collide and in which all components are far from equilibrium in the domains between the localized structures. Intermediate to these two extremes sits the semistrong interaction regime, in which the activator component of the front is near equilibrium in the intervals between adjacent fronts but both inhibitor components are far from equilibrium there, and hence their concentration profiles drive the front evolution. In this paper, we focus on dynamically evolving N-front solutions in the semistrong regime. The primary result is use of a renormalization group method to rigorously derive the system of N coupled ODEs that governs the positions of the fronts. The operators associated with the linearization about the N-front solutions have N small eigenvalues, and the N-front solutions may be decomposed into a component in the space spanned by the associated eigenfunctions and a component projected onto the complement of this space. This decomposition is carried out iteratively at a sequence of times. The former projections yield the ODEs for the front positions, while the latter projections are associated with remainders that we show stay small in a suitable norm during each iteration of the renormalization group method. Our results also help extend the application of the renormalization group method from the weak interaction regime for which it was initially developed to the semistrong interaction regime. The second set of results that we present is a detailed analysis of this system of ODEs, providing a classification of the possible front interactions in the cases of $N=1,2,3,4$, as well as how front solutions interact with the stationary pulse solutions studied earlier in [A. Doelman, P. van Heijster, and T. J. Kaper, J. Dynam. Differential Equations, 21 (2009), pp. 73–115; P. van Heijster, A. Doelman, and T. J. Kaper, Phys. D, 237 (2008), pp. 3335–3368]. Moreover, we present some results on the general case of N-front interactions.
Resumo:
Food has been a major agenda in political, socio-cultural, and environmental domains throughout history. The significance of food has been particularly highlighted in recent years with the growing public awareness of the unfolding impacts of climate change, challenging our understanding, practice, and expectations of our relationship with food. Parallel to this development has been the rise of web applications such as blogs, wikis, video and photo sharing sites, and social networking systems that are arguably more open, collaborative, and personalisable. These so-called ‘Web 2.0’ technologies have contributed to a more participatory Internet experience than what had previously been possible. An increasing number of these social applications are now available on mobile technologies where they take advantage of device-specific features such as sensors, location and context awareness, further expanding potential for the culture of participation and creativity. This international volume assembles a diverse collection of book chapters that contribute towards exploring and better understanding the opportunities and challenges provided by tools, interfaces, methods, and practices of social and mobile technology to enable engagement with people and creativity in the domain of food in contemporary society. It brings together an international group of academics and practitioners from a diverse range of disciplines such as computing and engineering, social sciences, digital media and human-computer interaction to critically examine a range of applications of social and mobile technology, such as social networking, mobile interaction, wikis, twitter, blogging, mapping, shared displays and urban screens, and their impact to foster a better understanding and practice of environmentally, socio-culturally, economically, and health-wise sustainable food culture.
Resumo:
The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions. (C) 1993 Wiley-Liss, Inc.
Resumo:
Transport between compartments of eukaryotic cells is mediated by coated vesicles. The archetypal protein coats COPI, COPII, and clathrin are conserved from yeast to human. Structural studies of COPII and clathrin coats assembled in vitro without membranes suggest that coat components assemble regular cages with the same set of interactions between components. Detailed three-dimensional structures of coated membrane vesicles have not been obtained. Here, we solved the structures of individual COPI-coated membrane vesicles by cryoelectron tomography and subtomogram averaging of in vitro reconstituted budding reactions. The coat protein complex, coatomer, was observed to adopt alternative conformations to change the number of other coatomers with which it interacts and to form vesicles with variable sizes and shapes. This represents a fundamentally different basis for vesicle coat assembly.
Resumo:
This study examined emotional climate in relation to the teaching and learning of grade 7 science. A multi-method and multi-theoretic approach used sociocultural frameworks as a foundation for interpretive research, conversation analysis, prosody analysis, and studies of nonverbal conduct. Emotional climate varied continuously throughout a lesson. Dialogues occurred and afforded learning when interactions between the teacher and students were fluent and included humour and collective effervescence. Emotional climate was negatively valenced when the teacher and/or students endeavoured to establish and maintain power by restricting others’ participation to spectator roles. The teacher’s endeavours to maintain and establish control over students were potentially detrimental to teaching and learning, teachers and learners. This type of teaching gradually evolved into a form we referred to as cranky teaching, whereby the teacher and her students showed signs of frustration and the enacted teaching and learning roles lacked fluency. The methods we pioneered in the present study might be helpful for other teachers who wish to participate in research on their classes to ascertain what works and should be strengthened, and identify practices and rituals that are deleterious and in need of change.
Resumo:
Purpose – Recent knowledge management (KM) literature suggests that KM activities are not independent of each other, rather they interact with each other to form a process which receives input from both external and internal business environments, and then produces new knowledge for future utilisation. The purpose of this paper is to empirically investigate the relationships between KM activities within the construction business context in order to identify and map the pattern of their interactions. Design/methodology/approach – A questionnaire survey was administered to a sample of contracting organisations operating in Hong Kong to elicit opinions of construction professionals on the intensity of KM activities currently being executed by their organisations in order to facilitate knowledge capture, sharing and utilisation. More than 150 respondents from 99 organisations responded to the survey. Additionally, a total of 15 semi-structured interviews were undertaken to provide a unique perspective on many of the challenges facing local construction organisations when dealing with KM activities. Findings – Knowledge acquisition and utilisation play paramount roles in the development of the organisational knowledge asset. The higher the intensity of these two activities, the larger the organisational knowledge pool which, in turn, demands greater knowledge dissemination capacity. This dissemination capacity enables more active and intense responses to market changes and clients' needs, thus facilitating and stimulating acquisition and utilisation of new tacit knowledge, thus improving organisational business performance. Originality/value – Interactions between KM activities were empirically investigated, from a strategic perspective, in the construction business context.
Resumo:
Purpose: Photoreceptor interactions reduce the temporal bandwidth of the visual system under mesopic illumination. The dynamics of these interactions are not clear. This study investigated cone-cone and rod-cone interactions when the rod (R) and three cone (L, M, S) photoreceptor classes contribute to vision via shared post-receptoral pathways. Methods: A four-primary photostimulator independently controlled photoreceptor activity in human observers. To determine the temporal dynamics of receptoral (L, S, R) and post-receptoral (LMS, LMSR, +L-M) pathways (5 Td, 7° eccentricity) in Experiment 1, ON-pathway sensitivity was assayed with an incremental probe (25ms) presented relative to onset of an incremental sawtooth conditioning pulse (1000ms). To define the post-receptoral pathways mediating the rod stimulus, Experiment 2 matched the color appearance of increased rod activation (30% contrast, 25-1000ms; constant cone excitation) with cone stimuli (variable L+M, L/L+M, S/L+M; constant rod excitation). Results: Cone-cone interactions with luminance stimuli (LMS, LMSR, L-cone) reduced Weber contrast sensitivity by 13% and the time course of adaptation was 23.7±1ms (μ±SE). With chromatic stimuli (+L-M, S), cone pathway sensitivity was also reduced and recovery was slower (+L-M 8%, 2.9±0.1ms; S 38%, 1.5±0.3ms). Threshold patterns at ON-conditioning pulse onset were monophasic for luminance and biphasic for chromatic stimuli. Rod-rod interactions increased sensitivity(19%) with a recovery time of 0.7±0.2ms. Compared to cone-cone interactions, rod-cone interactions with luminance stimuli reduced sensitivity to a lesser degree (5%) with faster recovery (42.9±0.7ms). Rod-cone interactions were absent with chromatic stimuli. Experiment 2 showed that rod activation generated luminance (L+M) signals at all durations, and chromatic signals (L/L+M, S/L+M) for durations >75ms. Conclusions: Temporal dynamics of cone-cone interactions are consistent with contrast sensitivity loss in the MC pathway for luminance stimuli and chromatically opponent responses in the PC and KC pathway with chromatic stimuli. Rod-cone interactions limit contrast sensitivity loss during dynamic illumination changes and increase the speed of mesopic light adaptation. The change in relative weighting of the temporal rod signal within the major post-receptoral pathways modifies the sensitivity and dynamics of photoreceptor interactions.
Resumo:
All levels of government continue to advocate increasing the number of people cycling for recreation and transport. However, governments and the general public still have concerns about the implications for the safety of cyclists and other road users. While there is concern about injury for bicycle-pedestrian collisions, for 2008-09 in Australia only 40 pedestrians were hospitalised as a result of a collision with a cyclist (and 33 cyclists from collisions with pedestrians). There is little research that observes changes over time in actual cyclist behaviours and interactions with other road users. This paper presents the results of an observational study of cycling in the Brisbane Central Business District based on data collected using the same methodology in October 2010 and 2012.
Resumo:
Next generation screens of diverse dimensions such as the Pebble e-paper watch, Google’s Project Glass, Microsoft’s Kinect and IllumiRoom, and large-scale multi-touch screen surface areas, increasingly saturate and diversify the urban mediascape. This paper seeks to contribute to media architecture and interaction design theory by starting to critically examine how these different screen formats are creating a ubiquitous screen mediascape across the city. We introduce next generation personal, domestic, and public screens. The paper critically challenges conventional dichotomies such as local / global, online / offline, private / public, large / small, mobile / static, that have been created in the past to describe some of the qualities and characteristics of interfaces and their usage. More and more scholars recognise that the black and white nature of these dichotomies does not adequately represent the fluid and agile capabilities of many new screen interfaces. With this paper, we hope to illustrate the more nuanced ‘trans-scalar’ qualities of these new urban interactions, that is, ways in which they provide a range functionality, without being locked into either end of a scale.
Resumo:
The study presented here applies the highly parameterised semi-distributed U.S. Department of Agriculture Soil and Water Assessment Tool (SWAT) to an Australian subtropical catchment. SWAT has been applied to numerous catchments worldwide and is considered to be a useful tool that is under ongoing development with contributions coming from different research groups in different parts of the world. In a preliminary run the SWAT model application for the Elimbah Creek catchment has estimated water yield for the catchment and has quantified the different sources. For the modelling period of April 1999 to September 2009 the results show that the main sources of water in Elimbah Creek are total surface runoff and lateral flow (65%). Base-flow contributes 36% to the total runoff. On a seasonal basis modelling results show a shift in the source of water contributing to Elimbah Creek from surface runoff and lateral flow during intense summer storms to base-flow conditions during dry months. Further calibration and validation of these results will confirm that SWAT provides an alternative to Australian water balance models.
Resumo:
In this study, the nature of the coupling interactions between copper and uracil as well as its several derivatives has been systematically investigated employing the atoms in molecules (AIM) theory and energy decomposition analyses. The whole interaction process has been investigated through the analyses of the radial distribution functions of the Cu⋯X (X = S and O) contact on the basis of the ab initio molecular dynamics. No direct relationship between the adsorption strengths and inhibition efficiencies of the inhibitors has been observed. Additionally, the possibility of the methyl-substituted dithiouracil species to act as copper corrosion inhibitors has been tested.
Resumo:
This study presents research findings to informthe design and development of innovativemobile services aiming to enable collocated people to interact with each other in public urban places. The main goal of this research is to provide applications and deliver guidelines to positively influence the user experience of different public urban places during everyday urban life. This study describes the design and evaluation of mobile content and services enabling mobile mediated interactions in an anonymous way. The research described in this thesis is threefold. First, this study investigates how Information and Communication Technology (ICT) can be utilised in particular urban public places to influence the experience of urban dwellers during everyday life. The research into urban residents and public places guides the design of three different technologies that form case studies to investigate and discover possibilities to digitally augment the public urban space and make the invisible data of our interactions in the urban environment visible. • Capital Music enables urban dwellers to listen to their music on their mobile devices as usual but also visualises the artworks of songs currently being played and listened to by other users in ones’ vicinity. • PlaceTagz uses QR codes printed on stickers that link to a digital message board enabling collocated users to interact with each other over time resulting in a place-based digital memory. • Sapporo World Window, Brisbane Hot Spots, and YourScreen are interactive content applications allowing people to share data with their mobile phones on public urban screens. The applications employ mobile phones to mediate interactions in form of location and video sharing. Second, this study sets out to explore the quality and nature of the experiences created through the developed and deployed case study applications. The development of a user experience framework for evaluating mobile mediated interactions in urban public places is described and applied within each case. Third, drawing on research from urban sociology, psychology, urban design, and the findings from this study, this thesis discusses how such interactions can have an impact on the urban experience.
Resumo:
This study aims to open-up the black box of the boardroom by directly observing directors’ interactions during meetings to better understand board processes. Design/methodology/approach: We analyse videotaped observations of board meetings at two Australian companies to develop insights into what directors do in meetings and how they participate in decision-making processes. The direct observations are triangulated with semi-structured interviews, mini-surveys and document reviews. Findings: Our analyses lead to two key findings: (i) while board meetings appear similar at a surface-level, boardroom interactions vary significantly at a deeper level (i.e. board members participate differently during different stages of discussions) and (ii) factors at multiple levels of analysis explain differences in interaction patterns, revealing the complex and nested nature of boardroom discussions. Research implications: By documenting significant intra- and inter-board meeting differences our study (i) challenges the widespread notion of board meetings as rather homogeneous and monolithic, (ii) points towards agenda items as a new unit of analysis (iii) highlights the need for more multi-level analyses in a board setting. Practical implications: While policy makers have been largely occupied with the “right” board composition, our findings suggest that decision outcomes or roles’ execution could be potentially affected by interactions at a board level. Differences in board meeting styles might explain prior ambiguous board structure-performance results, enhancing the need for greater normative consideration of how boards do their work. Originality/value: Our study complements existing research on boardroom dynamics and provides a systematic account of director interactions during board meetings.
Resumo:
Density functional theory (DFT) is a powerful approach to electronic structure calculations in extended systems, but suffers currently from inadequate incorporation of long-range dispersion, or Van der Waals (VdW) interactions. VdW-corrected DFT is tested for interactions involving molecular hydrogen, graphite, single-walled carbon nanotubes (SWCNTs), and SWCNT bundles. The energy correction, based on an empirical London dispersion term with a damping function at short range, allows a reasonable physisorption energy and equilibrium distance to be obtained for H2 on a model graphite surface. The VdW-corrected DFT calculation for an (8, 8) nanotube bundle reproduces accurately the experimental lattice constant. For H2 inside or outside an (8, 8) SWCNT, we find the binding energies are respectively higher and lower than that on a graphite surface, correctly predicting the well known curvature effect. We conclude that the VdW correction is a very effective method for implementing DFT calculations, allowing a reliable description of both short-range chemical bonding and long-range dispersive interactions. The method will find powerful applications in areas of SWCNT research where empirical potential functions either have not been developed, or do not capture the necessary range of both dispersion and bonding interactions.