929 resultados para Inpatients - statistics and numerical data
Resumo:
Latest issue consulted: 1990 ed.
Resumo:
Description based on: 1984.
Resumo:
Vol. 5 of 1950 never published.
Resumo:
Mode of access: Internet.
Resumo:
This thesis presents theoretical investigation of three topics concerned with nonlinear optical pulse propagation in optical fibres. The techniques used are mathematical analysis and numerical modelling. Firstly, dispersion-managed (DM) solitons in fibre lines employing a weak dispersion map are analysed by means of a perturbation approach. In the case of small dispersion map strengths the average pulse dynamics is described by a perturbation approach (NLS) equation. Applying a perturbation theory, based on the Inverse Scattering Transform method, an analytic expression for the envelope of the DM soliton is derived. This expression correctly predicts the power enhancement arising from the dispersion management.Secondly, autosoliton transmission in DM fibre systems with periodical in-line deployment of nonlinear optical loop mirrors (NOLMs) is investigated. The use of in-line NOLMs is addressed as a general technique for all-optical passive 2R regeneration of return-to-zero data in high speed transmission system with strong dispersion management. By system optimisation, the feasibility of ultra-long single-channel and wavelength-division multiplexed data transmission at bit-rates ³ 40 Gbit s-1 in standard fibre-based systems is demonstrated. The tolerance limits of the results are defined.Thirdly, solutions of the NLS equation with gain and normal dispersion, that describes optical pulse propagation in an amplifying medium, are examined. A self-similar parabolic solution in the energy-containing core of the pulse is matched through Painlevé functions to the linear low-amplitude tails. The analysis provides a full description of the features of high-power pulses generated in an amplifying medium.
Resumo:
Although crisp data are fundamentally indispensable for determining the profit Malmquist productivity index (MPI), the observed values in real-world problems are often imprecise or vague. These imprecise or vague data can be suitably characterized with fuzzy and interval methods. In this paper, we reformulate the conventional profit MPI problem as an imprecise data envelopment analysis (DEA) problem, and propose two novel methods for measuring the overall profit MPI when the inputs, outputs, and price vectors are fuzzy or vary in intervals. We develop a fuzzy version of the conventional MPI model by using a ranking method, and solve the model with a commercial off-the-shelf DEA software package. In addition, we define an interval for the overall profit MPI of each decision-making unit (DMU) and divide the DMUs into six groups according to the intervals obtained for their overall profit efficiency and MPIs. We also present two numerical examples to demonstrate the applicability of the two proposed models and exhibit the efficacy of the procedures and algorithms. © 2011 Elsevier Ltd.
Resumo:
Since wind at the earth's surface has an intrinsically complex and stochastic nature, accurate wind power forecasts are necessary for the safe and economic use of wind energy. In this paper, we investigated a combination of numeric and probabilistic models: a Gaussian process (GP) combined with a numerical weather prediction (NWP) model was applied to wind-power forecasting up to one day ahead. First, the wind-speed data from NWP was corrected by a GP, then, as there is always a defined limit on power generated in a wind turbine due to the turbine controlling strategy, wind power forecasts were realized by modeling the relationship between the corrected wind speed and power output using a censored GP. To validate the proposed approach, three real-world datasets were used for model training and testing. The empirical results were compared with several classical wind forecast models, and based on the mean absolute error (MAE), the proposed model provides around 9% to 14% improvement in forecasting accuracy compared to an artificial neural network (ANN) model, and nearly 17% improvement on a third dataset which is from a newly-built wind farm for which there is a limited amount of training data. © 2013 IEEE.
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption.
Resumo:
Abstract
Continuous variable is one of the major data types collected by the survey organizations. It can be incomplete such that the data collectors need to fill in the missingness. Or, it can contain sensitive information which needs protection from re-identification. One of the approaches to protect continuous microdata is to sum them up according to different cells of features. In this thesis, I represents novel methods of multiple imputation (MI) that can be applied to impute missing values and synthesize confidential values for continuous and magnitude data.
The first method is for limiting the disclosure risk of the continuous microdata whose marginal sums are fixed. The motivation for developing such a method comes from the magnitude tables of non-negative integer values in economic surveys. I present approaches based on a mixture of Poisson distributions to describe the multivariate distribution so that the marginals of the synthetic data are guaranteed to sum to the original totals. At the same time, I present methods for assessing disclosure risks in releasing such synthetic magnitude microdata. The illustration on a survey of manufacturing establishments shows that the disclosure risks are low while the information loss is acceptable.
The second method is for releasing synthetic continuous micro data by a nonstandard MI method. Traditionally, MI fits a model on the confidential values and then generates multiple synthetic datasets from this model. Its disclosure risk tends to be high, especially when the original data contain extreme values. I present a nonstandard MI approach conditioned on the protective intervals. Its basic idea is to estimate the model parameters from these intervals rather than the confidential values. The encouraging results of simple simulation studies suggest the potential of this new approach in limiting the posterior disclosure risk.
The third method is for imputing missing values in continuous and categorical variables. It is extended from a hierarchically coupled mixture model with local dependence. However, the new method separates the variables into non-focused (e.g., almost-fully-observed) and focused (e.g., missing-a-lot) ones. The sub-model structure of focused variables is more complex than that of non-focused ones. At the same time, their cluster indicators are linked together by tensor factorization and the focused continuous variables depend locally on non-focused values. The model properties suggest that moving the strongly associated non-focused variables to the side of focused ones can help to improve estimation accuracy, which is examined by several simulation studies. And this method is applied to data from the American Community Survey.
Resumo:
Over 150 million cubic meter of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach sized-sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.
Resumo:
Economic policy-making has long been more integrated than social policy-making in part because the statistics and much of the analysis that supports economic policy are based on a common conceptual framework – the system of national accounts. People interested in economic analysis and economic policy share a common language of communication, one that includes both concepts and numbers. This paper examines early attempts to develop a system of social statistics that would mirror the system of national accounts, particular the work on the development of social accounts that took place mainly in the 60s and 70s. It explores the reasons why these early initiatives failed but argues that the preconditions now exist to develop a new conceptual framework to support integrated social statistics – and hence a more coherent, effective social policy. Optimism is warranted for two reasons. First, we can make use of the radical transformation that has taken place in information technology both in processing data and in providing wide access to the knowledge that can flow from the data. Second, the conditions exist to begin to shift away from the straight jacket of government-centric social statistics, with its implicit assumption that governments must be the primary actors in finding solutions to social problems. By supporting the decision-making of all the players (particularly individual citizens) who affect social trends and outcomes, we can start to move beyond the sterile, ideological discussions that have dominated much social discourse in the past and begin to build social systems and structures that evolve, almost automatically, based on empirical evidence of ‘what works best for whom’. The paper describes a Canadian approach to developing a framework, or common language, to support the evolution of an integrated, citizen-centric system of social statistics and social analysis. This language supports the traditional social policy that we have today; nothing is lost. However, it also supports a quite different social policy world, one where individual citizens and families (not governments) are seen as the central players – a more empirically-driven world that we have referred to as the ‘enabling society’.
Resumo:
This article draws attention to the importance of routinely collected administrative data as an important source for understanding the characteristics of the Northern Ireland child welfare system as it has developed since the Children (Northern Ireland) Order 1995 became its legislative base. The article argues that the availability of such data is a strength of the Northern Ireland child welfare system and urges local politicians, lobbyists, researchers, policy-makers, operational managers, practitioners and service user groups to make more use of them. The main sources of administrative data are identified. Illustration of how these can be used to understand and to ask questions about the system is provided by considering some of the trends since the Children Order was enacted. The “protection” principle of the Children Order provides the focus for the illustration. The statistical trends considered relate to child protection referrals, investigations and registrations and to children and young people looked after under a range of court orders available to ensure their protection and well-being.
Resumo:
Following inspections in 2013 of all police forces, Her Majesty’s Inspectorate of Constabulary found that one-third of forces could not provide data on repeat victims of domestic abuse (DA) and concluded that in general there were ambiguities around the term ‘repeat victim’ and that there was a need for consistent and comparable statistics on DA. Using an analysis of police-recorded DA data from two forces, an argument is made for including both offences and non-crime incidents when identifying repeat victims of DA. Furthermore, for statistical purposes the counting period for repeat victimizations should be taken as a rolling 12 months from first recorded victimization. Examples are given of summary statistics that can be derived from these data down to Community Safety Partnership level. To reinforce the need to include both offences and incidents in analyses, repeat victim chronologies from policerecorded data are also used to briefly examine cases of escalation to homicide as an example of how they can offer new insights and greater scope for evaluating risk and effectiveness of interventions.