986 resultados para Innocenzo, da Imola, ca. 1485-ca. 1548.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Compounds of the type, LaAFeNbO(6) (A = Ca Sr) have been synthesized to study the electrical and magnetic properties and to examine valence degeneracy. The results show that valence degeneracy is not operative and the compounds are insulating. Magnetic susceptibility data show that part of the Fe is in Fs(2+) state, thus oxidizing part of Nb4+ to Nb5+ by an internal redox mechanism. The presence of mixed valent Fe is confirmed by Mossbauer spectra. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inelastic light scattering studies on a single crystal of electron-doped Ca(Fe0.95Co0.05)(2)As-2 superconductor, covering the tetragonal-to-orthorhombic structural transition as well as the magnetic transition at T-SM similar to 140 K and the superconducting transition temperature T-c similar to 23 K, reveal evidence for superconductivity-induced phonon renormalization. In particular, the phonon mode near 260 cm(-1) shows hardening below T-c, signaling its coupling with the superconducting gap. All three Raman active phonon modes show anomalous temperature dependence between room temperature and T-c, i.e. the phonon frequency decreases with lowering temperature. Further, the frequency of one of the modes shows a sudden change in temperature dependence at TSM. Using first-principles density functional theory based calculations, we show that the low temperature phase (T-c < T < T-SM) exhibits short-ranged stripe antiferromagnetic ordering, and estimate the spin-phonon couplings that are responsible for these phonon anomalies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Grain size has marked effects on charge-ordering and other properties of Nd(0.5)A(0.5)MnO(3) (A=Ca or Sr). Thus, the anti-ferromagnetic (AFM) transition in Nd0.5Ca0.5MnO3 is observed distinctly only in samples sintered at 1273 K or higher. The sample with a small grain size (sintered at 1173 K) shows evidence for greater ferromagnetic (FM) interaction at low temperatures, probably due to phase segregation. The FM transition as well as the charge-ordering transition in Nd0.5Sr0.5MnO3 becomes sharper in samples sintered at 1273 K or higher. The sample sintered at 1173 K does not show the AFM-CO transition around 150 K and is FM down to low temperatures; the apparent T-c-T-co gap decreases with the increase in the grain size. The samples sintered at lower temperatures (<1673 K) show evidence for greater segregation of the AFM and FM domains. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the electronic structure of Ca1-xSrxVO3 using photoemission spectroscopy. Core level spectra establish an electronic phase separation at the surface, leading to a distinctly different surface electronic structure compared to the bulk. Analysis of the photoemission spectra of this system allowed us to separate the surface and bulk contributions. These results help us to understand properties related to two vastly differing energy scales, namely the low-energy scale of thermal excitations ( $\sim\!k_{\rm B}T$) and the high-energy scale related to Coulomb and other electronic interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, there has been growing interest in Ca modified BaTiO3 structures due to their larger electro-optic coefficients for their use in optical storage of information over conventional BaTiO3 crystals. Barium Calcium Titanate (BCT) shows promising applications in advanced laser systems, optical interconnects and optical storage devices. BaTiO3 thin films of varied Ca (3 at. % - 15 at. %) doping were deposited using pulsed laser ablation (KrF excimer laser) technique over Pt/Si substrates. The stoichiometric and the compositional analysis were carried out using EDAX and SIMS. The dielectric studies were done at the frequency regime of 40 Hz to 100 kHz at different ambient temperatures from 200 K to 600 K. The BCT thin films exhibited diffuse phase transition, which was of a typical non lead relaxor behavior and had high dielectric constant and low dielectric loss. The phase transition for the different compositions of BCT thin films was near the room temperature, showing a marked departure from the bulk phase transition. The C - V and the hysteresis behavior confirmed the ferroelectric nature below the phase transition and paraelectric at the room temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thin films of ferroelectric ABi2Ta2O9 bismuth-layered structure, where A = Ba, Sr and Ca, were prepared by pulsed laser deposition technique on Pt/TiO2/SiO2/Si(100) substrates. The influence of substrate temperature between 500 to 750°C, and oxygen partial pressure 100-300 mTorr, on the structural and electrical properties of the films was investigated. The films deposited above 650°C substrate temperature showed complete Aurivillius layered structure. Films annealed at 750°C for 1h in oxygen atmosphere have exhibited better electrical properties. Atomic force microscopy study of surface topography shows that the films grown at lower temperature has smaller grains and higher surface roughness. This paper discusses the pronounced influence of A-site cation substitution on the structural and ferroelectric properties with the aid of Raman spectroscopy, X-ray diffraction and electrical properties. The degradation of ferroelectric properties with Ba and Ca substitution at A-sites is attributed to the higher structural distortion caused by changing tolerance factor. A systematic proportionate variation of coercive field is attributed to electronegativity difference of A-site cations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have synthesized ceramics of A2FeReO6 double-perovskites A2FeReO6 (A=Ba, Ca). Structural characterizations indicate a cubic structure with a=8.0854(1) Å for Ba2FeReO6 and a distorted monoclinic symmetry with a=5.396(1) Å, b=5.522(1) Å, c=7.688(2) Å and β=90.4° for Ca2FeReO6. The barium compound is metallic from 5K to 385K, i.e. no metal-insulator transition has been seen up to 385K, and the calcium compound is semiconducting from 5K to 385K. Magnetization measurements show a ferrimagnetic behavior for both materials, with Tc =315 K for Ba2FeReO6 and above 385K for Ca2FeReO6. At 5K we observed, only for Ba2FeReO6, a negative magnetoresistance of 10% in a magnetic field of 5T. Electrical, magnetic and thermal properties are discussed and compared to those of the analogous compounds Sr2Fe(Mo,Re)O6 recently studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanoparticles (dia ~ 5 - 7 nm) of Bi0.5X0.5(X=Ca,Sr)MnO3 are prepared by polymer assisted sol-gel method and characterized by various physico-chemical techniques. X-ray diffraction gives evidence for single phasic nature of the materials as well as their structures. Mono dispersed to a large extent, isolated nanoparticles are seen in the transmission electron micrographs. High resolution electron microscopy shows the crystalline nature of the nanoparticles. Superconducting quantum interferometer based magnetic measurements from 10K to 300K show that these nanomanganites retain the charge ordering nature unlike Pr and Nd based nanomanganites. The CO in Bi based manganites is thus found to be very robust consistent with the observation that magnetic field of the order of 130 T are necessary to melt the CO in these compounds. These results are supported by electron magnetic resonance measurements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The standard Gibbs energies of formation of platinum-rich intermetallic compounds in the systems Pt-Mg, Pt-Ca, and Pt-Ba have been measured in the temperature range of 950 to 1200 K using solid-state galvanic cells based on MgF2, CaF2, and BaF2 as solid electrolytes. The results are summarized by the following equations: ΔG° (MgPt7) = −256,100 + 16.5T (±2000) J/mol ΔG° (MgPt3) = −217,400 + 10.7T (±2000) J/mol ΔG° (CaPt5) = −297,500 + 13.0T (±5000) J/mol ΔG° (Ca2Pt7) = −551,800 + 22.3T (±5000) J/mol ΔG° (CaPt2) = −245,400 + 9.3T (±5000) J/mol ΔG° (BaPt5) = −238,700 + 8.1T (±4000) J/mol ΔG° (BaPt2) = −197,300 + 4.0T (±4000) J/mol where solid platinum and liquid alkaline earth metals are selected as the standard states. The relatively large error estimates reflect the uncertainties in the auxiliary thermodynamic data used in the calculation. Because of the strong interaction between platinum and alkaline earth metals, it is possible to reduce oxides of Group ILA metals by hydrogen at high temperature in the presence of platinum. The alkaline earth metals can be recovered from the resulting intermetallic compounds by distillation, regenerating platinum for recycling. The platinum-slag-gas equilibration technique for the study of the activities of FeO, MnO, or Cr2O3 in slags containing MgO, CaO, or BaO is feasible provided oxygen partial pressure in the gas is maintained above that corresponding to the coexistence of Fe and “FeO.”

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The tie lines delineating equilibria between different oxides of the Ca-Al-O system and liquid Ca-Al alloy has been determined at 1373 K. Equilibration of the alloy with two adjacent oxide phases in the CaO-Al2O3 pseudo-binary system was established in a closed cell made of iron. Equilibrium oxide phases were confirmed by x-ray analysis and alloy compositions were determined by chemical analysis. The compound 12CaO.7Al2O3 Ca12Al14O33 was found to be a stable phase in equilibrium with calcium alloys. The experimental diagram is consistent with that calculated from the free energies of formation of the oxide phases and activities in liquid Ca-Al alloys at 1373 K reported in the literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Homogeneous thin films of Sr(0.6)Ca(0.4)TiO(3) (SCT40) and asymmetric multilayer of SrTiO(3) (STO) and CaTiO(3) (CTO) were fabricated on Pt/Ti/SiO(2)/Si substrates by using pulsed laser deposition technique. The electrical behavior of films was observed within a temperature range of 153 K-373 K. A feeble dielectric peak of SCT40 thin film at 273 K is justified as paraelectric to antiferroelectric phase transition. Moreover, the Curie-Weiss temperature, determined from the epsilon'(T) data above the transition temperature is found to be negative. Using Landau theory, the negative Curie-Weiss temperature is interpreted in terms of an antiferroelectric transition. The asymmetric multilayer exhibits a broad dielectric peak at 273 K. and is attributed to interdiffusion at several interfaces of multilayer. The average dielectric constants for homogeneous Sr(0.6)Ca(0.4)TiO(3) films (similar to 650) and asymmetric multilayered films (similar to 350) at room temperature are recognized as a consequence of grain size effect. Small frequency dispersion in the real part of the dielectric constants and relatively low dielectric losses for both cases ensure high quality of the films applicable for next generation integrated devices. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A capillary-enforced template-based method has been applied to fabricate Pb(0.76)Ca(0.24)TiO(3) (PCT24) nanotubes via filling PCT24 precursor solution, prepared by modified sol-gel method, into nanochannels of anodic aluminum oxide templates. The morphology and structure of as-prepared PCT24 were examined by scanning electron microscopy, transmission electron microscopy (TEM) and X-ray diffraction techniques. The obtained PCT24 nanotubes with diameter of similar to 200 nm and wall thickness of similar to 20 nm exhibited a tetragonal perovskite structure. High resolution TEM (HRTEM) analysis confirmed that as-obtained PCT24 nanotubes made up of nanoparticles (5-8 nm) which were randomly aligned in the nanotubes. Formation of some solid crystalline PCT24 nanorods, Y-junctions and multi-branches were observed. Interconnections in the pores of template are responsible for the growth of Y-junctions and multi-branches. The possible formation mechanism of PCT24 nanotubes/nanorods was discussed. Ferroelectric hysteresis loops of PCT24 nanotube arrays were measured, showing a room temperature ferroelectric characteristic of as-prepared PCT24 nanotubes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present reduced dimensionality (RD) 3D HN(CA)NH for efficient sequential assignment in proteins. The experiment correlates the N-15 and H-1 chemical shift of a residue ('i') with those of its immediate N-terminal (i - 1) and C-terminal (i + 1) neighbors and provides four-dimensional chemical shift correlations rapidly with high resolution. An assignment strategy is presented which combines the correlations observed in this experiment with amino acid type information obtained from 3D CBCA(CO)NH. By classifying the 20 amino acid types into seven distinct categories based on C-13(beta) chemical shifts, it is observed that a stretch of five sequentially connected residues is sufficient to map uniquely on to the polypeptide for sequence specific resonance assignments. This method is exemplified by application to three different systems: maltose binding protein (42 kDa), intrinsically disordered domain of insulin-like growth factor binding protein-2 and Ubiquitin. Fast data acquisition is demonstrated using longitudinal H-1 relaxation optimization. Overall, 3D HN(CA)NH is a powerful tool for high throughput resonance assignment, in particular for unfolded or intrinsically disordered polypeptides.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present here an improvisation of HNN (Panchal, Bhavesh et al., 2001) called RD 3D HNCAN for backbone (HN, CA and N-15) assignment in both folded and unfolded proteins. This is a reduced dimensionality experiment which employs CA chemical shifts to improve dispersion. Distinct positive and negative peak patterns of various triplet segments along the polypeptide chain observed in HNN are retained and these provide start and check points for the sequential walk. Because of co-incrementing of CA and N-15, peaks along one of the dimensions appear at sums and differences of the CA and N-15 chemical shifts. This changes the backbone assignment protocol slightly and we present this in explicit detail. The performance of the experiment has been demonstrated using Ubiquitin and Plasmodium falciparum P2 proteins. The experiment is particularly valuable when two neighboring amino acid residues have nearly identical backbone N-15 chemical shifts. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrical conductivity and Seebeck coefficient of calcium-doped YFeO3, a potential cathode material in solid oxide fuel cells (SOFC), are measured as function of temperature and composition in air to resolve conflicts in the literature both on the nature of conduction (n- or p-type) and the types of defects (majority and the minority) present. Compositions of Y1-xCaxFeO3-delta with x = 0.0, 0.025, 0.05 and 0.1 are studied in the temperature range from 625 to 1250 K. All Y1-xCaxFeO3-delta samples show p-type semiconducting behaviour. Addition of Ca up to 5% dramatically increases the conductivity of YFeO3; increase is more gradual up to 10%. A second phase Ca2Fe2O5 appears in the microstructure for Ca concentrations in excess of 11%.