978 resultados para Infrared fixed point
Resumo:
In models where privately informed agents interact, agents may need to formhigher order expectations, i.e. expectations of other agents' expectations. This paper develops a tractable framework for solving and analyzing linear dynamic rational expectationsmodels in which privately informed agents form higher order expectations. The frameworkis used to demonstrate that the well-known problem of the infinite regress of expectationsidentified by Townsend (1983) can be approximated to an arbitrary accuracy with a finitedimensional representation under quite general conditions. The paper is constructive andpresents a fixed point algorithm for finding an accurate solution and provides weak conditions that ensure that a fixed point exists. To help intuition, Singleton's (1987) asset pricingmodel with disparately informed traders is used as a vehicle for the paper.
Resumo:
The present paper studies the probability of ruin of an insurer, if excess of loss reinsurance with reinstatements is applied. In the setting of the classical Cramer-Lundberg risk model, piecewise deterministic Markov processes are used to describe the free surplus process in this more general situation. It is shown that the finite-time ruin probability is both the solution of a partial integro-differential equation and the fixed point of a contractive integral operator. We exploit the latter representation to develop and implement a recursive algorithm for numerical approximation of the ruin probability that involves high-dimensional integration. Furthermore we study the behavior of the finite-time ruin probability under various levels of initial surplus and security loadings and compare the efficiency of the numerical algorithm with the computational alternative of stochastic simulation of the risk process. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We face the problem of characterizing the periodic cases in parametric families of (real or complex) rational diffeomorphisms having a fixed point. Our approach relies on the Normal Form Theory, to obtain necessary conditions for the existence of a formal linearization of the map, and on the introduction of a suitable rational parametrization of the parameters of the family. Using these tools we can find a finite set of values p for which the map can be p-periodic, reducing the problem of finding the parameters for which the periodic cases appear to simple computations. We apply our results to several two and three dimensional classes of polynomial or rational maps. In particular we find the global periodic cases for several Lyness type recurrences
Resumo:
Verkkovaihtosuuntaajalla pystytään muuntamaan tasajännite vaihtojännitteeksi ja päinvastoin. Verkkovaihtosuuntaajan toiminta perustuu tehokytkinten ohjaukseen ja sopivan modulointimenetelmän käyttöön. Vektorisäädössä vaihtosuuntaajanvirrat ja jännitteet esitetään kompleksitasossa, jolloin virta- ja jännitekomponentit voidaan esittää vektoreina. Vektorisäädössä verkkovaihtosuuntaajan ohjaustoteutetaan laskemalla kompleksitasossa vektoreille arvot, jotka tuottavat vaihtosuuntaajan lähtöön halutun vektorin. Koska FPGA-piirit mahdollistavat nopean rinnakkaisen laskennan, soveltuvat ne hyvin vektorisäädön toteuttamiseen. FPGA-piirien rakenteesta johtuen on säätöjärjestelmän suunnittelussa huomioitava kiinteän pilkun lukujen riittävä bittileveys ja järjestelmän diskretointiaika. Työssä suunnitellaan verkkovaihtosuuntaajan vektorisäätö ja tutkitaan bittileveyden vaikutusta säädön toteuttamiseen FPGA-piirillä. Bittileveyden tarkasteluun esitetään käytettäväksi tilastollisia menetelmiä. Työssä tarkastellaan kiinteän pilkun järjestelmän ja liukulukujärjestelmän erosuureen tilastollisia tunnusmerkkejä sekä histogrammia. Tarkasteluissa huomattiin, että maksimivirhe itsessään ei tarjoa riittävästi tietoa erosuureen jakautumisesta. Näin ollen maksimivirhe ei ole kaikissa tilanteissa sovelias menetelmä riittävän bittitarkkuuden määrittämiseen. Työssä esitetään riittävän bittitarkkuuden määrittelemiseen käytettäväksi otossuureista otosvarianssia, keskipoikkeamaa ja vaihteluväliä.
Resumo:
We study new supergravity solutions related to large-N c N=1 supersymmetric gauge field theories with a large number N f of massive flavors. We use a recently proposed framework based on configurations with N c color D5 branes and a distribution of N f flavor D5 branes, governed by a function N f S(r). Although the system admits many solutions, under plausible physical assumptions the relevant solution is uniquely determined for each value of x ≡ N f /N c . In the IR region, the solution smoothly approaches the deformed Maldacena-Núñez solution. In the UV region it approaches a linear dilaton solution. For x < 2 the gauge coupling β g function computed holographically is negative definite, in the UV approaching the NSVZ β function with anomalous dimension γ 0 = −1/2 (approaching − 3/(32π 2)(2N c − N f )g 3)), and with β g → −∞ in the IR. For x = 2, β g has a UV fixed point at strong coupling, suggesting the existence of an IR fixed point at a lower value of the coupling. We argue that the solutions with x > 2 describe a"Seiberg dual" picture where N f − 2N c flips sign.
Resumo:
We prove that every transcendental meromorphic map $f$ with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton's method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton's method for entire maps are simply connected, which solves a well-known open question.
Resumo:
We show the existence of families of hip-hop solutions in the equal-mass 2N-body problem which are close to highly eccentric planar elliptic homographic motions of 2N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter ϵ, the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small ϵ ≠ 0, the topological transversality persists and Brouwer's fixed point theorem shows the existence of this kind of solutions in the full system
Resumo:
One of the main complexities in the simulation of the nonlinear dynamics of rigid bodies consists in describing properly the finite rotations that they may undergo. It is well known that, to avoid singularities in the representation of the SO(3) rotation group, at least four parameters must be used. However, it is computationally expensive to use a four-parameters representation since, as only three of the parameters are independent, one needs to introduce constraint equations in the model, leading to differential-algebraic equations instead of ordinary differential ones. Three-parameter representations are numerically more efficient. Therefore, the objective of this paper is to evaluate numerically the influence of the parametrization and its singularities on the simulation of the dynamics of a rigid body. This is done through the analysis of a heavy top with a fixed point, using two three-parameter systems, Euler's angles and rotation vector. Theoretical results were used to guide the numerical simulation and to assure that all possible cases were analyzed. The two parametrizations were compared using several integrators. The results show that Euler's angles lead to faster integration compared to the rotation vector. An Euler's angles singular case, where representation approaches a theoretical singular point, was analyzed in detail. It is shown that on the contrary of what may be expected, 1) the numerical integration is very efficient, even more than for any other case, and 2) in spite of the uncertainty on the Euler's angles themselves, the body motion is well represented.
Resumo:
The goal of this paper was to test the presence of mimicry in Asclepias curassavica L., Epidendrum fulgens Brong., and Lantana camara L. The study was carried out at the Parque Estadual de Itapeva, RS, southern Brazil, from 2004 to 2006. Flowering period of each of the three species was followed up; focal observations of butterflies visiting flowers, from fixed point and during random walks were carried out. We also estimated the frequency of pollinaria removal in the orchid, as well as its mode of reproduction. All these variables were important for testing the mimicry hypothesis. Despite some temporal coincidences in the flowering period of two plants in the system, there was no statistical association among the three plants as to flowering period. Twenty-nine species of butterflies, as potential pollinators, were recorded, particularly Agraulis vanillae maculosa, Dryas iulia alcionea, Urbanus simplicius, Tegosa claudina, and Heliconius erato phyllis, which were the more frequent visitors of the three plants. There was association between the number of visits to L. camara and E. fulgens, based on Pearson correlation (r = 0.4603; n = 19; P = 0.0473). Pollinaria removal of E. fulgens was low, as measured by the percentage of removal (range: 0 - 10%). The analysis of the mode of reproduction of this orchid showed its pollinator-dependence, since no fruits were formed by spontaneous self-pollination. In contrast, the percentage of fruit set that resulted from geitonogamy and xenogamy was, in average, 86%. The results here shown are not conclusive as to the occurrence of a mimicry system among the three plants.
Resumo:
Dans ce mémoire, nous étudierons quelques propriétés algébriques, géométriques et topologiques des surfaces de Riemann compactes. Deux grand sujets seront traités. Tout d'abord, en utilisant le fait que toute surface de Riemann compacte de genre g plus grand ou égal à 2 possède un nombre fini de points de Weierstrass, nous allons pouvoir conclure que ces surfaces possèdent un nombre fini d'automorphismes. Ensuite, nous allons étudier de plus près la formule de trace d'Eichler. Ce théorème nous permet de trouver le caractère d'un automorphisme agissant sur l'espace des q-différentielles holomorphes. Nous commencerons notre étude en utilisant la quartique de Klein. Nous effectuerons un exemple de calcul utilisant le théorème d'Eichler, ce qui nous permettra de nous familiariser avec l'énoncé du théorème. Finalement, nous allons démontrer la formule de trace d'Eichler, en prenant soin de traiter le cas où l'automorphisme agit sans point fixe séparément du cas où l'automorphisme possède des points fixes.
Resumo:
Most of the commercial and financial data are stored in decimal fonn. Recently, support for decimal arithmetic has received increased attention due to the growing importance in financial analysis, banking, tax calculation, currency conversion, insurance, telephone billing and accounting. Performing decimal arithmetic with systems that do not support decimal computations may give a result with representation error, conversion error, and/or rounding error. In this world of precision, such errors are no more tolerable. The errors can be eliminated and better accuracy can be achieved if decimal computations are done using Decimal Floating Point (DFP) units. But the floating-point arithmetic units in today's general-purpose microprocessors are based on the binary number system, and the decimal computations are done using binary arithmetic. Only few common decimal numbers can be exactly represented in Binary Floating Point (BF P). ln many; cases, the law requires that results generated from financial calculations performed on a computer should exactly match with manual calculations. Currently many applications involving fractional decimal data perform decimal computations either in software or with a combination of software and hardware. The performance can be dramatically improved by complete hardware DFP units and this leads to the design of processors that include DF P hardware.VLSI implementations using same modular building blocks can decrease system design and manufacturing cost. A multiplexer realization is a natural choice from the viewpoint of cost and speed.This thesis focuses on the design and synthesis of efficient decimal MAC (Multiply ACeumulate) architecture for high speed decimal processors based on IEEE Standard for Floating-point Arithmetic (IEEE 754-2008). The research goal is to design and synthesize deeimal'MAC architectures to achieve higher performance.Efficient design methods and architectures are developed for a high performance DFP MAC unit as part of this research.
Resumo:
This thesis is an attempt to initiate the development of a discrete geometry of the discrete plane H = {(qmxo,qnyo); m,n e Z - the set of integers}, where q s (0,1) is fixed and (xO,yO) is a fixed point in the first quadrant of the complex plane, xo,y0 ¢ 0. The discrete plane was first considered by Harman in 1972, to evolve a discrete analytic function theory for geometric difference functions. We shall mention briefly, through various sections, the principle of discretization, an outline of discrete a alytic function theory, the concept of geometry of space and also summary of work done in this thesis
Resumo:
Decimal multiplication is an integral part of financial, commercial, and internet-based computations. This paper presents a novel double digit decimal multiplication (DDDM) technique that offers low latency and high throughput. This design performs two digit multiplications simultaneously in one clock cycle. Double digit fixed point decimal multipliers for 7digit, 16 digit and 34 digit are simulated using Leonardo Spectrum from Mentor Graphics Corporation using ASIC Library. The paper also presents area and delay comparisons for these fixed point multipliers on Xilinx, Altera, Actel and Quick logic FPGAs. This multiplier design can be extended to support decimal floating point multiplication for IEEE 754- 2008 standard.
Resumo:
Es werde das lineare Regressionsmodell y = X b + e mit den ueblichen Bedingungen betrachtet. Weiter werde angenommen, dass der Parametervektor aus einem Ellipsoid stammt. Ein optimaler Schaetzer fuer den Parametervektor ist durch den Minimax-Schaetzer gegeben. Nach der entscheidungstheoretischen Formulierung des Minimax-Schaetzproblems werden mit dem Bayesschen Ansatz, Spektralen Methoden und der Darstellung von Hoffmann und Laeuter Wege zur Bestimmung des Minimax- Schaetzers dargestellt und in Beziehung gebracht. Eine Betrachtung von Modellen mit drei Einflussgroeßen und gemeinsamen Eigenvektor fuehrt zu einer Strukturierung des Problems nach der Vielfachheit des maximalen Eigenwerts. Die Bestimmung des Minimax-Schaetzers in einem noch nicht geloesten Fall kann auf die Bestimmung einer Nullstelle einer nichtlinearen reellwertigen Funktion gefuehrt werden. Es wird ein Beispiel gefunden, in dem die Nullstelle nicht durch Radikale angegeben werden kann. Durch das Intervallschachtelungs-Prinzip oder Newton-Verfahren ist die numerische Bestimmung der Nullstelle moeglich. Durch Entwicklung einer Fixpunktgleichung aus der Darstellung von Hoffmann und Laeuter war es in einer Simulation moeglich die angestrebten Loesungen zu finden.
Resumo:
It has been widely known that a significant part of the bits are useless or even unused during the program execution. Bit-width analysis targets at finding the minimum bits needed for each variable in the program, which ensures the execution correctness and resources saving. In this paper, we proposed a static analysis method for bit-widths in general applications, which approximates conservatively at compile time and is independent of runtime conditions. While most related work focus on integer applications, our method is also tailored and applicable to floating point variables, which could be extended to transform floating point number into fixed point numbers together with precision analysis. We used more precise representations for data value ranges of both scalar and array variables. Element level analysis is carried out for arrays. We also suggested an alternative for the standard fixed-point iterations in bi-directional range analysis. These techniques are implemented on the Trimaran compiler structure and tested on a set of benchmarks to show the results.