820 resultados para Inappropriate Prescribing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To determine the prevalence and nature of prescribing errors in general practice; to explore the causes, and to identify defences against error. Methods: 1) Systematic reviews; 2) Retrospective review of unique medication items prescribed over a 12 month period to a 2% sample of patients from 15 general practices in England; 3) Interviews with 34 prescribers regarding 70 potential errors; 15 root cause analyses, and six focus groups involving 46 primary health care team members Results: The study involved examination of 6,048 unique prescription items for 1,777 patients. Prescribing or monitoring errors were detected for one in eight patients, involving around one in 20 of all prescription items. The vast majority of the errors were of mild to moderate severity, with one in 550 items being associated with a severe error. The following factors were associated with increased risk of prescribing or monitoring errors: male gender, age less than 15 years or greater than 64 years, number of unique medication items prescribed, and being prescribed preparations in the following therapeutic areas: cardiovascular, infections, malignant disease and immunosuppression, musculoskeletal, eye, ENT and skin. Prescribing or monitoring errors were not associated with the grade of GP or whether prescriptions were issued as acute or repeat items. A wide range of underlying causes of error were identified relating to the prescriber, patient, the team, the working environment, the task, the computer system and the primary/secondary care interface. Many defences against error were also identified, including strategies employed by individual prescribers and primary care teams, and making best use of health information technology. Conclusion: Prescribing errors in general practices are common, although severe errors are unusual. Many factors increase the risk of error. Strategies for reducing the prevalence of error should focus on GP training, continuing professional development for GPs, clinical governance, effective use of clinical computer systems, and improving safety systems within general practices and at the interface with secondary care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To develop a list of prescribing indicators specific for the hospital setting that would facilitate the prospective collection of high severity and/or high frequency prescribing errors, which are also amenable to electronic clinical decision support (CDS). Method: A three-stage consensus technique (electronic Delphi) was carried out with 20 expert pharmacists and physicians across England. Participants were asked to score prescribing errors using a 5-point Likert scale for their likelihood of occurrence and the severity of the most likely outcome. These were combined to produce risk scores, from which median scores were calculated for each indicator across the participants in the study. The degree of consensus between the participants was defined as the proportion that gave a risk score in the same category as the median. Indicators were included if a consensus of 80% or more was achieved. Results: A total of 80 prescribing errors were identified by consensus as being high or extreme risk. The most common drug classes named within the indicators were antibiotics (n=13), antidepressants (n=8), nonsteroidal anti-inflammatory drugs (n=6), and opioid analgesics (n=6).The most frequent error type identified as high or extreme risk were those classified as clinical contraindications (n=29/80). Conclusion: 80 high risk prescribing errors in the hospital setting have been identified by an expert panel. These indicators can serve as the basis for a standardised, validated tool for the collection of data in both paperbased and electronic prescribing processes, as well as to assess the impact of electronic decision support implementation or development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To determine the prevalence and nature of prescribing and monitoring errors in general practices in England. Design Retrospective case note review of unique medication items prescribed over a 12 month period to a 2% random sample of patients. Mixed effects logistic regression was used to analyse the data. Setting Fifteen general practices across three primary care trusts in England. Data sources Examination of 6048 unique prescription items prescribed over the previous 12 months for 1777 patients. Main outcome measures Prevalence of prescribing and monitoring errors, and severity of errors, using validated definitions. Results Prescribing and/or monitoring errors were detected in 4.9% (296/6048) of all prescription items (95% confidence interval 4.4 - 5.5%). The vast majority of errors were of mild to moderate severity, with 0.2% (11/6048) of items having a severe error. After adjusting for covariates, patient-related factors associated with an increased risk of prescribing and/or monitoring errors were: age less than 15 (Odds Ratio (OR) 1.87, 1.19 to 2.94, p=0.006) or greater than 64 years (OR 1.68, 1.04 to 2.73, p=0.035), and higher numbers of unique medication items prescribed (OR 1.16, 1.12 to 1.19, p<0.001). Conclusion Prescribing and monitoring errors are common in English general practice, although severe errors are unusual. Many factors increase the risk of error. Having identified the most common and important errors, and the factors associated with these, strategies to prevent future errors should be developed based on the study findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To examine the causes of prescribing and monitoring errors in English general practices and provide recommendations for how they may be overcome. Design: Qualitative interview and focus group study with purposive sampling and thematic analysis informed by Reason’s accident causation model. Participants: General practice staff participated in a combination of semi-structured interviews (n=34) and six focus groups (n=46). Setting: Fifteen general practices across three primary care trusts in England. Results: We identified seven categories of high-level error-producing conditions: the prescriber, the patient, the team, the task, the working environment, the computer system, and the primary-secondary care interface. Each of these was further broken down to reveal various error-producing conditions. The prescriber’s therapeutic training, drug knowledge and experience, knowledge of the patient, perception of risk, and their physical and emotional health, were all identified as possible causes. The patient’s characteristics and the complexity of the individual clinical case were also found to have contributed to prescribing errors. The importance of feeling comfortable within the practice team was highlighted, as well as the safety of general practitioners (GPs) in signing prescriptions generated by nurses when they had not seen the patient for themselves. The working environment with its high workload, time pressures, and interruptions, and computer related issues associated with mis-selecting drugs from electronic pick-lists and overriding alerts, were all highlighted as possible causes of prescribing errors and often interconnected. Conclusion: This study has highlighted the complex underlying causes of prescribing and monitoring errors in general practices, several of which are amenable to intervention.