894 resultados para Image analysis, computer-assisted
Resumo:
The efficacy of the multifractal spectrum as a tool for characterizing images has been studied. This spectrum has been computed for digitized images of the nucleus of human cervical cancer cells and it was observed that the entire spectrum is almost fully reproduced for a normal cell while only the right half (q<0) of the spectrum is reproduced for a cancerous cell. Cells in stages in between the two extremes show a shortening of the left half of the spectrum proportional to their condition. The extent of this shortening has been found to be sufficient to permit a classification between three classes of cells at varying distances from a basal cancerous layer-the superficial cells, the intermediate cells and the parabasal cells. This technique may be used for automatic screening of the population while also indicating the stage of malignancy
Resumo:
This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation for extracting water-covered regions. Analysis of MODIS satellite images is applied in three stages: before flood, during flood and after flood. Water regions are extracted from the MODIS images using image classification (based on spectral information) and image segmentation (based on spatial information). Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs) separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification (SVM and ANN) and region-based image segmentation is an accurate and reliable approach for the extraction of water-covered regions. (c) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time-series analysis of satellite images utilizing pixel spectral information for image clustering and region based segmentation for extracting water covered regions. MODIS satellite images are analyzed at two stages: before flood and during flood. Multi-temporal MODIS images are processed in two steps. In the first step, clustering algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to distinguish the water regions from the non-water based on spectral information. These algorithms are chosen since they are quite efficient in solving multi-modal optimization problems. These classified images are then segmented using spatial features of the water region to extract the river. From the results obtained, we evaluate the performance of the methods and conclude that incorporating region based image segmentation along with clustering algorithms provides accurate and reliable approach for the extraction of water covered region.
Resumo:
The mode I fracture toughness of concrete can be experimentally determined using three point bend beam in conjunction with digital image correlation (DIC). Three different geometrically similar sizes of beams are cast for this study. To study the influence of fly ash and silica fume on fracture toughness of SCC, three SCC mixes are prepared with and without mineral additions. The scanning electron microscope (SEM) images are taken on the fractured surface to add information on fracture process in SCC. From this study, it is concluded that the fracture toughness of SCC with mineral addition is higher when compared to those without mineral addition.
Resumo:
This paper discusses an approach for river mapping and flood evaluation to aid multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation to extract water covered region. Analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images is applied in two stages: before flood and during flood. For these images the extraction of water region utilizes spectral information for image classification and spatial information for image segmentation. Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as artificial neural networks and gene expression programming to separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water region. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification and region-based segmentation is an accurate and reliable for the extraction of water-covered region.
Resumo:
Fringe tracking and fringe order assignment have become the central topics of current research in digital photoelasticity. Isotropic points (IPs) appearing in low fringe order zones are often either overlooked or entirely missed in conventional as well as digital photoelasticity. We aim to highlight image processing for characterizing IPs in an isochromatic fringe field. By resorting to a global analytical solution of a circular disk, sensitivity of IPs to small changes in far-field loading on the disk is highlighted. A local theory supplements the global closed-form solutions of three-, four-, and six-point loading configurations of circular disk. The local theoretical concepts developed in this paper are demonstrated through digital image analysis of isochromatics in circular disks subjected to three-and four-point loads. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
对薄板成形应变场传统的测量方法进行了研究,指出了其不足和误差的来源,提出了数字图像分析法测量薄板成形中的应变场,对测量原理、新的测量方法对传统方法的改进,以及如何降低误差进行了介绍,指出数字图像分析法的前景,提出了改进意见。
Resumo:
A new particle image technique was developed to analyze the dispersion of tracer particles in an internally circulating fluidized bed (ICFB). The movement course and the concentration distribution of tracer particles in the bed were imaged and the degree of inhomogeneity of tracer particles was analyzed. The lateral and axial dispersion coefficients of particles were calculated for various zones in ICFB. Results indicate that the lateral diffusion coefficient in the fluidized bed with uneven air distribution is significantly higher than that in uniform bubbling beds with even air distribution. The dispersion coefficients are different along bed length and height.