305 resultados para ISING ANTIFERROMAGNET
Resumo:
We present the experimental phase diagram of LiHoxEr1-xF4, a dilution series of dipolar-coupled model magnets. The phase diagram was determined using a combination of ac susceptibility and neutron scattering. Three unique phases in addition to the Ising ferromagnet LiHoF4 and the XY antiferromagnet LiErF4 have been identified. Below x = 0.86, an embedded spin-glass phase is observed, where a spin glass exists within the ferromagnetic structure. Below x = 0.57, an Ising spin glass is observed consisting of frozen needlelike clusters. For x ∼ 0.3–0.1, an antiferromagnetically coupled spin glass occurs. A reduction of TC(x) for the ferromagnet is observed which disobeys the mean-field predictions that worked for LiHoxY1-xF4.
Resumo:
A quantum critical point (QCP) is a singularity in the phase diagram arising because of quantum mechanical fluctuations. The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors, quantum magnets and ultracold atomic condensates, have been related to the importance of critical quantum and thermal fluctuations near such a point. However, direct and continuous control of these fluctuations has been difficult to realize, and complete thermodynamic and spectroscopic information is required to disentangle the effects of quantum and classical physics around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram, we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the unconventional longitudinal (Higgs) mode of the ordered phase by damping it thermally. We demonstrate the development of two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum and thermal fluctuations can behave largely independently near a QCP.
Holes localized on a Skyrmion in a doped antiferromagnet on the honeycomb lattice: Symmetry analysis
Resumo:
Using the low-energy effective field theory for hole-doped antiferromagnets on the honeycomb lattice, we study the localization of holes on Skyrmions, as a potential mechanism for the preformation of Cooper pairs. In contrast to the square lattice case, for the standard radial profile of the Skyrmion on the honeycomb lattice, only holes residing in one of the two hole pockets can get localized. This differs qualitatively from hole pairs bound by magnon exchange, which is most attractive between holes residing in different momentum space pockets. On the honeycomb lattice, magnon exchange unambiguously leads to f-wave pairing, which is also observed experimentally. Using the collective-mode quantization of the Skyrmion, we determine the quantum numbers of the localized hole pairs. Again, f-wave symmetry is possible, but other competing pairing symmetries cannot be ruled out.
Resumo:
El modelo de Ising es un problema de física estadística que tiene solución exacta en dos dimensiones, para el caso de tres dimensiones es preciso utilizar procedimientos de simulación. En este trabajo se ha utilizado un método de Monte Carlo para estudiar el comportamiento del sistema en distintas situaciones, siendo de especial interés el estudio del paso por la transición de fase a la temperatura crítica (Temperatura de Curie, Tc). Se ha estudiado la cinética de los dominios magnéticos, considerando la estructura de los dominios desde el punto de vista de la energía, y en consecuencia, hemos tenido en cuenta la energía de canje que tiende a mantener alineados los espines de los electrones en los materiales ferromagnéticos. Este término contribuye a hacer mayor el espesor de la pared, por la tendencia a que los espines de los átomos vecinos se mantengan alineados. Se ha considerado el ferromagnetismo desde el punto de vista cuántico y basado en las propiedades de simetría de las funciones de onda de los electrones, que se manifiestan en variaciones de la energía electrostática de un sistema en función de la orientación de sus espines. Se han estudiado los efectos de histéresis que resultan al aplicar un campo magnético externo a la red y la orientación de los espines de la misma a lo largo de su evolución. Para la determinación de las propiedades de los materiales ferromagnéticos se utiliza el ciclo de histéresis aunque algunas de las propiedades magnéticas, como la dirección de anisotropía, no pueden ser deducidas directamente de esta manera. Se utilizan distintos métodos para la determinación de la anisotropía de las muestras. El acoplamiento entre la magnetización en zonas próximas a la superficie y la magnetización en zonas internas de la muestra puede ser utilizado para obtener un ciclo de histéresis, que permita obtener sensores magnéticos adaptados a las medidas que se quieran realizar. Mediante el control del campo coercitivo y la susceptibilidad se abre una línea de investigación para el desarrollo de sensores magnéticos
Resumo:
Temperature chaos has often been reported in the literature as a rare-event–driven phenomenon. However, this fact has always been ignored in the data analysis, thus erasing the signal of the chaotic behavior (still rare in the sizes achieved) and leading to an overall picture of a weak and gradual phenomenon. On the contrary, our analysis relies on a largedeviations functional that allows to discuss the size dependences. In addition, we had at our disposal unprecedentedly large configurations equilibrated at low temperatures, thanks to the Janus computer. According to our results, when temperature chaos occurs its effects are strong and can be felt even at short distances.