640 resultados para INHALED ANESTHETICS
Resumo:
GABAA receptors are the major inhibitory neurotransmitter receptors in the brain and are the target for many clinically important drugs. Among the many modulatory compounds are also the intravenous anesthetics propofol and etomidate, and barbiturates. The mechanism of receptor modulation by these compounds is of mayor relevance. The site of action of these compounds has been located to subunit interfaces in the intra-membrane region of the receptor. In α1β2γ2 GABAA receptors there are five such interfaces, two β+/α- and one each of α+/β-, α+/γ- and γ+/β- subunit interfaces. We have used reporter mutations located in the second trans-membrane region in different subunits to probe the effects of changes at these subunit interfaces on modulation by propofol, etomidate and pentobarbital. We provide evidence for the fact that each of these compounds either modulates through a different set of subunit interfaces or through the same set of subunit interfaces to a different degree. As a GABAA receptor pentamer harbors two β+/α- subunit interfaces, we used concatenated receptors to dissect the contribution of individual interfaces and show that only one of these interfaces is important for receptor modulation by etomidate.
Resumo:
Acknowledgements Gokul Gopalan (a Senior Global Medical Director [Respiratory], at Teva Pharmaceuticals, Frazer, PA, US, at the time of this study), assisted with study design. Funding Funds to acquire the dataset from the Pharmo Institute for Drug Outcomes Research (Utrecht, the Netherlands) were provided by RiRL. The study received institutional support from Teva Pharmaceuticals Europe B.V. Gokul Gopalan, a Senior Global Medical Director (Respiratory), at Teva Pharmaceuticals, Frazer, PA, US, at the time of this study, assisted with study design, but neither Teva Pharmaceuticals Europe B.V. nor Teva Pharmaceuticals, Frazer, PA, US, contributed, either in part or in whole, to the collection, analysis, or interpretation of study data, manuscript writing, or the decision to submit the manuscript for publication. Erratum The original version of this article unfortunately contained errors that have since been corrected. The word “pharmo” has been fully capitalised to “PHARMO” throughout the article. The reference to Table 2 in the first and second sentence under the Outcomes heading has been replaced with Fig. 3. Under the Abbreviations heading ‘extrafine-particle’ was repeated, this has been corrected to ‘EF-HFA-BDP [Qvar®]: extrafine-particle hydrofluoroalkane beclomethasone dipropionate’. The competing interests of Nicolas Roche and Theresa Guibert have been amended. Academic affiliations for Dirkje S. Postma (2), Richard J. Martin (3), Ron M.C. Herrings (4), Jetty Overbeek (4), and Nicolas Roche (7) have been corrected. Figure 3 in the online and pdf version did not match, this been amended
Resumo:
Objectives To estimate the therapeutic and adverse effects of addition of inhaled anticholinergics to β2 agonists in acute asthma in children and adolescents.
Resumo:
Objective To determine whether inhaled budesonide and beclomethasone are equipotent in the treatment of asthma in primary care.
Resumo:
NO synthases are widely distributed in the lung and are extensively involved in the control of airway and vascular homeostasis. It is recognized, however, that the O2-rich environment of the lung may predispose NO toward toxicity. These Janus faces of NO are manifest in recent clinical trials with inhaled NO gas, which has shown therapeutic benefit in some patient populations but increased morbidity in others. In the airways and circulation of humans, most NO bioactivity is packaged in the form of S-nitrosothiols (SNOs), which are relatively resistant to toxic reactions with O2/O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document}. This finding has led to the proposition that channeling of NO into SNOs may provide a natural defense against lung toxicity. The means to selectively manipulate the SNO pool, however, has not been previously possible. Here we report on a gas, O-nitrosoethanol (ENO), which does not react with O2 or release NO and which markedly increases the concentration of indigenous species of SNO within airway lining fluid. Inhalation of ENO provided immediate relief from hypoxic pulmonary vasoconstriction without affecting systemic hemodynamics. Further, in a porcine model of lung injury, there was no rebound in cardiopulmonary hemodynamics or fall in oxygenation on stopping the drug (as seen with NO gas), and additionally ENO protected against a decline in cardiac output. Our data suggest that SNOs within the lung serve in matching ventilation to perfusion, and can be manipulated for therapeutic gain. Thus, ENO may be of particular benefit to patients with pulmonary hypertension, hypoxemia, and/or right heart failure, and may offer a new therapeutic approach in disorders such as asthma and cystic fibrosis, where the airways may be depleted of SNOs.
Resumo:
The neural pathway that governs an escape response of Drosophila to sudden changes in light intensity can be artificially induced by electrical stimulation of the brain and monitored by electrical recording from the effector muscles. We have refined previous work in this system to permit reliable ascertainment of two kinds of response: (i) a short-latency response that follows from direct excitation of a giant fiber neuron in the interior of the fly brain and (ii) a long-latency response in which electrical stimulation triggers neurons in the optic ganglia that ultimately impinge on the giant fiber neuron. The general anesthetic halothane is reported here to have very different potencies in inhibiting these two responses. The long-latency response is obliterated at concentrations similar to those that cause gross behavioral effects in adult flies, whereas the short-latency response is only partially inhibited at doses that are 10-fold higher. Three other volatile anesthetic agents show a similar pattern. Thus, as in higher organisms, the Drosophila nervous system is differentiated into components of high and low sensitivity to general anesthetics. Moreover, this work shows that one of the sensitive components of the nervous system lies in the optic lobe and is readily assayed by its effect on downstream systems; it should provide a focus for exploring the effects of genetic alteration of anesthetic sensitivity.
Resumo:
Typewritten.
Resumo:
Primary objective: The study aimed to examine the changes in water distribution in the soft tissue during systemic steroid activity. Research design: A three-way cross-over, randomized, placebo-controlled, double-blind trial was used, including 4 weeks of fluticasone propionate pMDI 200 mug b.i.d. delivered via Babyhaler(R), budesonide pressurized metered dose inhaler (pMDI) 200 mug b.i.d. delivered via Nebuchamber(R) and placebo. Spacers were primed before use. In total, 40 children aged 1-3 years, with mild intermittent asthma were included. Twenty-five of the children completed all three treatments. At the end of each treatment period body impedance and skin ultrasonography were measured. Methods and procedures: We measured changes in water content of the soft tissues by two methods. Skin ultrasonography was used to detect small changes in dermal water content, and bioelectrical impedance was used to assess body water content and distribution. Main outcomes and results: We found an increase in skin density of the shin from fluticasone as measured by ultrasonography (p = 0.01). There was a tendency for a consistent elevation of impedance parameters from active treatments compared to placebo although overall this effect was not statistically significant (0.1< p <0.2). However, sub-analyses indicated a significant effect on whole-body and leg impedance from budesonide treatment (p <0.05). Conclusion: Decreased growth during inhaled steroid treatment seems to partly reflect generalized changes in body water.