985 resultados para INDUCED STATUS EPILEPTICUS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the behavioral and electroencephalographic (EEG) analysis of seizures induced by the intrahippocampal injection in rats of granulitoxin, a neurotoxic peptide from the sea anemone Bunodosoma granulifera, was determined. The first alterations occurred during microinjection of granulitoxin (8 µg) into the dorsal hippocampus and consisted of seizure activity that began in the hippocampus and spread rapidly to the occipital cortex. This activity lasted 20-30 s, and during this period the rats presented immobility. During the first 40-50 min after its administration, three to four other similar short EEG seizure periods occurred and the rats presented the following behavioral alterations: akinesia, facial automatisms, head tremor, salivation, rearing, jumping, barrel-rolling, wet dog shakes and forelimb clonic movements. Within 40-50 min, the status epilepticus was established and lasted 8-12 h. These results are similar to those observed in the acute phase of the pilocarpine model of temporal lobe epilepsy and suggest that granulitoxin may be a useful tool not only to study the sodium channels, but also to develop a new experimental model of status epilepticus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Brown-Vialetto-Van Laere syndrome (BVVLS) is a rare neurological disease characterized by sensorineural hearing loss and multiple cranial nerve palsies, usually involving the VIIth and IXth to XIIth cranial nerves. We describe the clinical and pathological features of a 33-year-old woman with BVVLS. The patient developed progressive exertional dyspnea, with clinical and laboratory findings of right-sided heart failure and pulmonary hypertension. She developed status epilepticus in the setting of cardiac deterioration and respiratory infection, and died of cardiogenic and septic shock. Autopsy disclosed bilateral neuronal loss and gliosis in the inferior colliculi, locus coeruleus and facial and vestibular nuclei. Cor pulmonale is a complication of hypoventilation-induced hypoxia and hypercapnia and had not yet been reported in BVVLS. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Brain excitability diseases like epilepsy constitute one factor that influences brain electrophysiological features. Cortical spreading depression (CSD) is a phenomenon that can be altered by changes in brain excitability. CSD propagation was presently characterized in adult mate and female rats from a normal Wistar strain and from a genetically audiogenic seizure-prone strain, the Wistar audiogenic rat (WAR), both previously submitted (RAS(+)), or not (RAS(-)), to repetitive acoustic stimulation, to provoke audiogenic kindling in the WAR-strain. A gender-specific change in CSD-propagation was found. Compared to seizure-resistant animals, in the RAS- condition, mate and female WARs, respectively, presented CSD-propagation impairment and facilitation, characterized, respectively, by lower and higher propagation velocities (P<0.05). In contraposition, in the RAS(+) condition, mate and female WARs displayed, respectively, higher and tower CSD-propagation rates, as compared to the corresponding controls. In some Wistar and WAR females, we determined estrous cycle status on the day of the CSD-recording as being either estrous or diestrous; no cycle-phase-related differences in CSD-propagation velocities were detected. In contrast to other epilepsy models, such as Status Epilepticus induced by pilocarpine, despite the CSD-velocity reduction, in no case was CSD propagation blocked in WARs. The results suggest a gender-related, estrous cycle-phase-independent modification in the CSD-susceptibility of WAR rats, both in the RAS(+) and RAS(-) situation. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION: Predicting outcome in comatose survivors of cardiac arrest is based on data validated by guidelines that were established before the era of therapeutic hypothermia. We sought to evaluate the predictive value of clinical, electrophysiological and imaging data on patients submitted to therapeutic hypothermia. MATERIALS AND METHODS: A retrospective analysis of consecutive patients receiving therapeutic hypothermia during years 2010 and 2011 was made. Neurological examination, somatosensory evoked potentials, auditory evoked potentials, electroencephalography and brain magnetic resonance imaging were obtained during the first 72 hours. Glasgow Outcome Scale at 6 months, dichotomized into bad outcome (grades 1 and 2) and good outcome (grades 3, 4 and 5), was defined as the primary outcome. RESULTS: A total of 26 patients were studied. Absent pupillary light reflex, absent corneal and oculocephalic reflexes, absent N20 responses on evoked potentials and myoclonic status epilepticus showed no false-positives in predicting bad outcome. A malignant electroencephalographic pattern was also associated with a bad outcome (p = 0.05), with no false-positives. Two patients with a good outcome showed motor responses no better than extension (false-positive rate of 25%, p = 0.008) within 72 hours, both of them requiring prolonged sedation. Imaging findings of brain ischemia did not correlate with outcome. DISCUSSION: Absent pupillary, corneal and oculocephalic reflexes, absent N20 responses and a malignant electroencephalographic pattern all remain accurate predictors of poor outcome in cardiac arrest patients submitted to therapeutic hypothermia. CONCLUSION: Prolonged sedation beyond the hypothermia period may confound prediction strength of motor responses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The lithium-pilocarpine model mimics most features of human temporal lobe epilepsy. Following our prior studies of cerebral metabolic changes, here we explored the expression of transporters for glucose (GLUT1 and GLUT3) and monocarboxylates (MCT1 and MCT2) during and after status epilepticus (SE) induced by lithium-pilocarpine in PN10, PN21, and adult rats. In situ hybridization was used to study the expression of transporter mRNAs during the acute phase (1, 4, 12 and 24h of SE), the latent phase, and the early and late chronic phases. During SE, GLUT1 expression was increased throughout the brain between 1 and 12h of SE, more strongly in adult rats; GLUT3 increased only transiently, at 1 and 4h of SE and mainly in PN10 rats; MCT1 was increased at all ages but 5-10-fold more in adult than in immature rats; MCT2 expression increased mainly in adult rats. At all ages, MCT1 and MCT2 up-regulation was limited to the circuit of seizures while GLUT1 and GLUT3 changes were more widespread. During the latent and chronic phases, the expression of nutrient transporters was normal in PN10 rats. In PN21 rats, GLUT1 was up-regulated in all brain regions. In contrast, in adult rats GLUT1 expression was down-regulated in the piriform cortex, hilus and CA1 as a result of extensive neuronal death. The changes in nutrient transporter expression reported here further support previous findings in other experimental models demonstrating rapid transcriptional responses to marked changes in cerebral energetic/glucose demand.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acute organophosphate (OP) intoxication is associated with many symptoms and clinical signs, including potentially life-threatening seizures and status epilepticus. Instead of being linked to the direct cholinergic toxidrome, OP-related seizures are more probably linked to the interaction of OPs with acetylcholineindependent neuromodulation pathways, such as GABA and NMDA. The importance of preventing, or recognizing and treating OP-related seizures lies in that, the central nervous system (CNS) damage from OP poisoning is thought to be due to the excitotoxicity of the seizure activity itself rather than a direct toxic effect. Muscular weakness and paralysis occurring 1-4 days after the resolution of an acute cholinergic toxidrome, the intermediate syndrome is usually not diagnosed until significant respiratory insufficiency has occurred; it is nevertheless a major cause of OP-induced morbidity and mortality and requires aggressive supportive treatment. The condition usually resolves spontaneously in 1-2 weeks.Treatment of OP intoxication relies on prompt diagnosis, and specific and immediate treatment of the lifethreatening symptoms. Since patients suffering from OP poisoning can secondarily expose care providers via contaminated skin, clothing, hair, or body fluids. EMS and hospital caregivers should be prepared to protect themselves with appropriate protective equipment, isolate such patients, and decontaminate them. After prompt decontamination, the initial priority of patient management is an immediate ABCDE (A : airway, B : breathing, C : circulation, D : dysfunction or disability of the central nervous system, and E : exposure) resuscitation approach, including aggressive respiratory support, since respiratory failure is the usual ultimate cause of death. The subsequent priority is initiating atropine therapy to oppose the muscarinic symptoms and diazepam to prevent or control seizures, with oximes added to enhance acetylcholinesterase (AChE) activity recovery. Large doses of atropine and oximes may be necessary for poisoning due to suicidal ingestions of OP pesticides.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rationale: Clinical and electrophysiological prognostic markers of brain anoxia have been mostly evaluated in comatose survivors of out hospital cardiac arrest (OHCA) after standard resuscitation, but their predictive value in patients treated with mild induced hypothermia (IH) is unknown. The objective of this study was to identify a predictive score of independent clinical and electrophysiological variables in comatose OHCA survivors treated with IH, aiming at a maximal positive predictive value (PPV) and a high negative predictive value (NPV) for mortality. Methods: We prospectively studied consecutive adult comatose OHCA survivors from April 2006 to May 2009, treated with mild IH to 33-34_C for 24h at the intensive care unit of the Lausanne University Hospital, Switzerland. IH was applied using an external cooling method. As soon as subjects passively rewarmed (body temperature >35_C) they underwent EEG and SSEP recordings (off sedation), and were examined by experienced neurologists at least twice. Patients with status epilepticus were treated with AED for at least 24h. A multivariable logistic regression was performed to identify independent predictors of mortality at hospital discharge. These were used to formulate a predictive score. Results: 100 patients were studied; 61 died. Age, gender and OHCA etiology (cardiac vs. non-cardiac) did not differ among survivors and nonsurvivors. Cardiac arrest type (non-ventricular fibrillation vs. ventricular fibrillation), time to return of spontaneous circulation (ROSC) >25min, failure to recover all brainstem reflexes, extensor or no motor response to pain, myoclonus, presence of epileptiform discharges on EEG, EEG background unreactive to pain, and bilaterally absent N20 on SSEP, were all significantly associated with mortality. Absent N20 was the only variable showing no false positive results. Multivariable logistic regression identified four independent predictors (Table). These were used to construct the score, and its predictive values were calculated after a cut-off of 0-1 vs. 2-4 predictors. We found a PPV of 1.00 (95% CI: 0.93-1.00), a NPV of 0.81 (95% CI: 0.67-0.91) and an accuracy of 0.93 for mortality. Among 9 patients who were predicted to survive by the score but eventually died, only 1 had absent N20. Conclusions: Pending validation in a larger cohort, this simple score represents a promising tool to identify patients who will survive, and most subjects who will not, after OHCA and IH. Furthermore, while SSEP are 100% predictive of poor outcome but not available in most hospitals, this study identifies EEG background reactivity as an important predictor after OHCA. The score appears robust even without SSEP, suggesting that SSEP and other investigations (e.g., mismatch negativity, serum NSE) might be principally needed to enhance prognostication in the small subgroup of patients failing to improve despite a favorable score.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pilocarpine-induced (320 mg/kg, ip) status epilepticus (SE) in adult (2-3 months) male Wistar rats results in extensive neuronal damage in limbic structures. Here we investigated whether the induction of a second SE (N = 6) would generate damage and cell loss similar to that seen after a first SE (N = 9). Counts of silver-stained (indicative of cell damage) cells, using the Gallyas argyrophil III method, revealed a markedly lower neuronal injury in animals submitted to re-induction of SE compared to rats exposed to a single episode of pilocarpine-induced SE. This effect could be explained as follows: 1) the first SE removes the vulnerable cells, leaving behind resistant cells that are not affected by the second SE; 2) the first SE confers increased resistance to the remaining cells, analogous to the process of ischemic tolerance. Counting of Nissl-stained cells was performed to differentiate between these alternative mechanisms. Our data indicate that different neuronal populations react differently to SE induction. For some brain areas most, if not all, of the vulnerable cells are lost after an initial insult leaving only relatively resistant cells and little space for further damage or cell loss. For some other brain areas, in contrast, our data support the hypothesis that surviving cells might be modified by the initial insult which would confer a sort of excitotoxic tolerance. As a consequence of both mechanisms, subsequent insults after an initial insult result in very little damage regardless of their intensity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The acute hippocampal brain slice preparation is an important in vitro screening tool for potential anticonvulsants. Application of 4-aminopyridine (4-AP) or removal of external Mg2+ ions induces epileptiform bursting in slices which is analogous to electrical brain activity seen in status epilepticus states. We have developed these epileptiform models for use with multi-electrode arrays (MEAs), allowing recording across the hippocampal slice surface from 59 points. We present validation of this novel approach and analyses using two anticonvulsants, felbamate and phenobarbital, the effects of which have already been assessed in these models using conventional extracellular recordings. In addition to assessing drug effects on commonly described parameters (duration, amplitude and frequency), we describe novel methods using the MEA to assess burst propagation speeds and the underlying frequencies that contribute to the epileptiform activity seen. Contour plots are also used as a method of illustrating burst activity. Finally, we describe hitherto unreported properties of epileptiform bursting induced by 100M4-AP or removal of external Mg2+ ions. Specifically, we observed decreases over time in burst amplitude and increase over time in burst frequency in the absence of additional pharmacological interventions. These MEA methods enhance the depth, quality and range of data that can be derived from the hippocampal slice preparation compared to conventional extracellular recordings. It may also uncover additional modes of action that contribute to anti-epileptiform drug effects

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The acute hippocampal brain slice preparation is an important in vitro screening tool for potential anticonvulsants. Application of 4-aminopyridine (4-AP) or removal of external Mg2+ ions induces epileptiform bursting in slices which is analogous to electrical brain activity seen in status epilepticus states. We have developed these epileptiform models for use with multi-electrode arrays (MEAs), allowing recording across the hippocampal slice surface from 59 points. We present validation of this novel approach and analyses using two anticonvulsants, felbamate and phenobarbital, the effects of which have already been assessed in these models using conventional extracellular recordings. In addition to assessing drug effects on commonly described parameters (duration, amplitude and frequency), we describe novel methods using the MEA to assess burst propagation speeds and the underlying frequencies that contribute to the epileptiform activity seen. Contour plots are also used as a method of illustrating burst activity. Finally, we describe hitherto unreported properties of epileptiform, bursting induced by 100 mu M 4-AP or removal of external Mg2+ ions. Specifically, we observed decreases over time in burst amplitude and increase over time in burst frequency in the absence of additional pharmacological interventions. These MEA methods enhance the depth, quality and range of data that can be derived from the hippocampal slice preparation compared to conventional extracellular recordings. it may also uncover additional modes of action that contribute to anti-epileptiform drug effects. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Summary Background and purpose: Phytocannabinoids in Cannabis sativa have diverse pharmacological targets extending beyond cannabinoid receptors and several exert notable anticonvulsant effects. For the first time, we investigated the anticonvulsant profile of the phytocannabinoid cannabidivarin (CBDV) in vitro and in in vivo seizure models. Experimental approach: The effect of CBDV (1-100μM) on epileptiform local field potentials (LFPs) induced in rat hippocampal brain slices by 4-AP application or Mg2+-free conditions was assessed by in vitro multi-electrode array recordings. Additionally, the anticonvulsant profile of CBDV (50-200 mg kg-1) in vivo was investigated in four rodent seizure models: maximal electroshock (mES) and audiogenic seizures in mice, and pentylenetetrazole (PTZ) and pilocarpine-induced seizures in rat. CBDV effects in combination with commonly-used antiepileptic drugs were investigated in rat seizures. Finally, the motor side effect profile of CBDV was investigated using static beam and gripstrength assays. Key results: CDBV significantly attenuated status epilepticus-like epileptiform LFPs induced by 4-AP and Mg2+-free conditions. CBDV had significant anticonvulsant effects in mES (≥100 mg kg-1), audiogenic (≥50 mg kg-1) and PTZ-induced seizures (≥100 mg kg-1). CBDV alone had no effect against pilocarpine-induced seizures, but significantly attenuated these seizures when administered with valproate or phenobarbital at 200 mg kg-1 CBDV. CBDV had no effect on motor function. Conclusions and Implications: These results indicate that CBDV is an effective anticonvulsant across a broad range of seizure models, does not significantly affect normal motor function and therefore merits further investigation in chronic epilepsy models to justify human trials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the central nervous system, zinc is released along with glutamate during neurotransmission and, in excess, can promote neuronal death. Experimental studies have shown that metallothioneins I/II (MT-I/II), which chelate free zinc, can affect seizures and reduce neuronal death after status epilepticus. Our aim was to evaluate the expression of MT-I/II in the hippocampus of patients with temporal lobe epilepsy (TLE). Hippocampi from patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) and patients with TLE associated with tumor or dysplasia (TLE-TD) were evaluated for expression of MT-I/II, for the vesicular zinc levels, and for neuronal, astroglial, and microglial populations. Compared to control cases, MTLE group displayed widespread increase in MT-I/II expression, astrogliosis, microgliosis and reduced neuronal population. In TLE-TD, the same changes were observed, except that were mainly confined to fascia dentata. Increased vesicular zinc was observed only in the inner molecular layer of MTLE patients, when compared to control cases. Correlation and linear regression analyses indicated an association between increased MT-I/II and increased astrogliosis in TLE. MT-I/II levels did not correlate with any clinical variables, but MTLE patients with secondary generalized seizures (SGS) had less MT-I/II than MTLE patients without SGS. In conclusion, MT-I/II expression was increased in hippocampi from TLE patients and our data suggest that it is associated with astrogliosis and may be associated with different seizure spread patterns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As imagens de ressonância magnética são úteis no estudo de modelos experimentais de epilepsia do lobo temporal. A técnica manganese-enhanced MRI (MEMRI) é de interesse por combinar os efeitos provocados pelo manganês no aumento do contraste de populações celulares ativadas, ao competir com o cálcio na transmissão sináptica. Assim, o propósito deste estudo foi investigar a evolução temporal do contraste provocado pelo manganês na fase aguda da epilepsia do lobo temporal induzida por pilocarpina sistêmica e compará-las à expressão da proteína c-Fos. Nessa fase, a intensidade do sinal MEMRI foi analisada em três diferentes pontos temporais (5, 15 ou 30 minutos) após o início do status epilepticus (SE). O grupo que foi mantido em status epilepticus por 30 minutos mostrou diminuição na intensidade de sinal no CA1 e giro denteado (GD). Não houve diferenças entre o Grupo Controle e os outros grupos tratados com pilocarpina. A expressão da proteína c-Fos, nos mesmos animais, mostrou que, mesmo no status epilepticus de curta duração (5 minutos) já há ativação celular máxima nas sub-regiões do hipocampo (GD, CA1 e CA3). Nas condições experimentais testadas, nossos dados sugerem que o sinal MEMRI não foi sensível para identificar variações detectáveis da ativação celular na fase aguda do modelo de pilocarpina. Nossos achados não são consistentes com a ideia que o contraste por manganês reflete primariamente alterações na atividade celular durante o SE quando outros elementos modificadores do sinal podem atuar.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: To review our clinical experience and determine if there are appropriate signs and symptoms to consider POLG sequencing prior to valproic acid (VPA) dosing in patients with seizures. METHODS: Four patients who developed VPA-induced hepatotoxicity were examined for POLG sequence variations. A subsequent chart review was used to describe clinical course prior to and after VPA dosing. RESULTS: Four patients of multiple different ethnicities, age 3-18 years, developed VPA-induced hepatotoxicity. All were given VPA due to intractable partial seizures. Three of the patients had developed epilepsia partialis continua. The time from VPA exposure to liver failure was between 2 and 3 months. Liver failure was reversible in one patient. Molecular studies revealed homozygous p.R597W or p.A467T mutations in two patients. The other two patients showed compound heterozygous mutations, p.A467T/p.Q68X and p.L83P/p.G888S. Clinical findings and POLG mutations were diagnostic of Alpers-Huttenlocher syndrome. CONCLUSION: Our cases underscore several important findings: POLG mutations have been observed in every ethnic group studied to date; early predominance of epileptiform discharges over the occipital region is common in POLG-induced epilepsy; the EEG and MRI findings varying between patients and stages of the disease; and VPA dosing at any stage of Alpers-Huttenlocher syndrome can precipitate liver failure. Our data support an emerging proposal that POLG gene testing should be considered in any child or adolescent who presents or develops intractable seizures with or without status epilepticus or epilepsia partialis continua, particularly when there is a history of psychomotor regression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Le co-transporteur KCC2 spécifique au potassium et chlore a pour rôle principal de réduire la concentration intracellulaire de chlore, entraînant l’hyperpolarisation des courants GABAergic l’autorisant ainsi à devenir inhibiteur dans le cerveau mature. De plus, il est aussi impliqué dans le développement des synapses excitatrices, nommées aussi les épines dendritiques. Le but de notre projet est d’étudier l’effet des modifications concernant l'expression et la fonction de KCC2 dans le cortex du cerveau en développement dans un contexte de convulsions précoces. Les convulsions fébriles affectent environ 5% des enfants, et ce dès la première année de vie. Les enfants atteints de convulsions fébriles prolongées et atypiques sont plus susceptibles à développer l’épilepsie. De plus, la présence d’une malformation cérébrale prédispose au développement de convulsions fébriles atypiques, et d’épilepsie du lobe temporal. Ceci suggère que ces pathologies néonatales peuvent altérer le développement des circuits neuronaux irréversiblement. Cependant, les mécanismes qui sous-tendent ces effets ne sont pas encore compris. Nous avons pour but de comprendre l'impact des altérations de KCC2 sur la survenue des convulsions et dans la formation des épines dendritiques. Nous avons étudié KCC2 dans un modèle animal de convulsions précédemment validé, qui combine une lésion corticale à P1 (premier jour de vie postnatale), suivie d'une convulsion induite par hyperthermie à P10 (nommés rats LHS). À la suite de ces insultes, 86% des rats mâles LHS développent l’épilepsie à l’âge adulte, au même titre que des troubles d’apprentissage. À P20, ces animaux presentent une augmentation de l'expression de KCC2 associée à une hyperpolarisation du potentiel de réversion de GABA. De plus, nous avons observé des réductions dans la taille des épines dendritiques et l'amplitude des courants post-synaptiques excitateurs miniatures, ainsi qu’un déficit de mémoire spatial, et ce avant le développement des convulsions spontanées. Dans le but de rétablir les déficits observés chez les rats LHS, nous avons alors réalisé un knock-down de KCC2 par shARN spécifique par électroporation in utero. Nos résultats ont montré une diminution de la susceptibilité aux convulsions due à la lésion corticale, ainsi qu'une restauration de la taille des épines. Ainsi, l’augmentation de KCC2 à la suite d'une convulsion précoce, augmente la susceptibilité aux convulsions modifiant la morphologie des épines dendritiques, probable facteur contribuant à l’atrophie de l’hippocampe et l’occurrence des déficits cognitifs. Le deuxième objectif a été d'inspecter l’effet de la surexpression précoce de KCC2 dans le développement des épines dendritiques de l’hippocampe. Nous avons ainsi surexprimé KCC2 aussi bien in vitro dans des cultures organotypiques d’hippocampe, qu' in vivo par électroporation in utero. À l'inverse des résultats publiés dans le cortex, nous avons observé une diminution de la densité d’épines dendritiques et une augmentation de la taille des épines. Afin de confirmer la spécificité du rôle de KCC2 face à la région néocorticale étudiée, nous avons surexprimé KCC2 dans le cortex par électroporation in utero. Cette manipulation a eu pour conséquences d’augmenter la densité et la longueur des épines synaptiques de l’arbre dendritique des cellules glutamatergiques. En conséquent, ces résultats ont démontré pour la première fois, que les modifications de l’expression de KCC2 sont spécifiques à la région affectée. Ceci souligne les obstacles auxquels nous faisons face dans le développement de thérapie adéquat pour l’épilepsie ayant pour but de moduler l’expression de KCC2 de façon spécifique.