990 resultados para INDUCED METASTABLE STATES
Resumo:
The mouse mammary gland develops postnatally under the control of female reproductive hormones. Estrogens and progesterone trigger morphogenesis by poorly understood mechanisms acting on a subset of mammary epithelial cells (MECs) that express their cognate receptors, estrogen receptor alpha (ERalpha) and progesterone receptor (PR). Here, we show that in the adult female, progesterone drives proliferation of MECs in two waves. The first, small wave, encompasses PR(+) cells and requires cyclin D1, the second, large wave, comprises mostly PR(-) cells and relies on the tumor necrosis factor (TNF) family member, receptor activator of NF-kappaB-ligand (RANKL). RANKL elicits proliferation by a paracrine mechanism. Ablation of RANKL in the mammary epithelium blocks progesterone-induced morphogenesis, and ectopic expression of RANKL in MECs completely rescues the PR(-/-) phenotype. Systemic administration of RANKL triggers proliferation in the absence of PR signaling, and injection of a RANK signaling inhibitor interferes with progesterone-induced proliferation. Thus, progesterone elicits proliferation by a cell-intrinsic and a, more important, paracrine mechanism.
Resumo:
Kinetic parameters of T cell receptor (TCR) interactions with its ligand have been proposed to control T cell activation. Analysis of kinetic data obtained has so far produced conflicting insights; here, we offer a consideration of this problem. As a model system, association and dissociation of a soluble TCR (sT1) and its specific ligand, an azidobenzoic acid derivative of the peptide SYIPSAEK-(ABA)I (residues 252-260 from Plasmodium berghei circumsporozoite protein), bound to class I MHC H-2K(d)-encoded molecule (MHCp) were studied by surface plasmon resonance. The association time courses exhibited biphasic patterns. The fast and dominant phase was assigned to ligand association with the major fraction of TCR molecules, whereas the slow component was attributed to the presence of traces of TCR dimers. The association rate constant derived for the fast phase, assuming a reversible, single-step reaction mechanism, was relatively slow and markedly temperature-dependent, decreasing from 7.0 x 10(3) at 25 degrees C to 1.8 x 10(2) M(-1).s(-1) at 4 degrees C. Hence, it is suggested that these observed slow rate constants are the result of unresolved elementary steps of the process. Indeed, our analysis of the kinetic data shows that the time courses of TCR-MHCp interaction fit well to two different, yet closely related mechanisms, where an induced fit or a preequilibrium of two unbound TCR conformers are operational. These mechanisms may provide a rationale for the reported conformational flexibility of the TCR and its unusual ligand recognition properties, which combine high specificity with considerable crossreactivity.
Resumo:
Résumé : L'amygdale latérale (AL) joue un .rôle essentiel dans la plasticité synaptique à la base du conditionnement de la peur. Malgré le faite que la majorité des cellules de l'AL reçoivent les afférentes nécessaires, une potentialisation dans seulement une partie d'entre elles est obligatoire afin que l'apprentissage de la peur ait lieu. Il a été montré que ces cellules expriment la forme active de CREB, et celui-ci a été associé aux cellules dites de type 'nonaccomrnodating' (nAC). Très récemment, une étude a impliqué les circuits récurrents de l'AL dans le conditionnement de la peur. Un lien entre ces deux observations n'a toutefois jamais été établi. t Nous avons utilisé un protocole in vitro de forte activation de l'AL, résultant dans l'induction de 'bursts' provenant de l'hippocampe et se propageant jusqu'à l'AL. Dans l'AL ces 'bursts' atteignent toutes les cellules et se propagent à travers plusieurs chemins. Utilisant ce protocole, nous avons, pour la première fois pu associer dans l'AL, des cellules connectées de manière récurrente avec des cellules de type nAC. Aussi bien dans ces dernières que dans les cellules de type 'accommodating' (AC), une diminution dans la transmission inhibitrice, à la fois exprimée de manière pré synaptique mais également indépendant de la synthèse de protéine a pu être observé. Au contraire, une potentialisation induite et exprimée au niveau pré synaptique ainsi que dépendante de la synthèse de protéine a pu être trouvé uniquement dans les cellules de type nAC. De plus, une hyperexcitabilité, dépendante des récepteurs NMDA a pu être observé, avec une sélection préférentielle des cellules du type nAC dans la génération de bursts. Nous avons également pu démontrer que la transformation d'un certain nombre de cellules de type AC en cellules dites nAC accompagnait cette augmentation générale de l'excitabilité de l'AL. Du faite da la grande quantité d'indices suggérant une connexion entre le système noradrénergique et les états de peur/d'anxiété, les effets d'une forte activation de l'AL sur ce dernier ont été investigués et ont révélés une perte de sa capacité de modulation du 'spiking pattern'. Finalement, des changements au niveau de l'expression d'un certain nombre de gènes, incluant celui codant pour le BDNF, a pu être trouvé à la suite d'une forte activation de l'AL. En raison du lien récemment décrit entre l'expression de la forme active de CREB et des cellules de type nAC ainsi que celui de l'implication des cellules de l'AL connectés de manière récurrente dans l'apprentissage de la peur, nos résultats nous permettent de suggérer un modèle expliquant comment la potentialisation des connections récurrentes entre cellules de type nAC pourrait être à la base de leur recrutement sélectif pendant le conditionnement de la peur. De plus, ils peuvent offrir des indices par rapport aux mécanismes à travers lesquels une sous population de neurones peut être réactivée par une stimulation externe précédemment inefficace, et induire ainsi un signal suffisamment fort pour qu'il soit transmit aux structures efférentes de l'AL. Abstract : The lateral nucleus of the amygdala (LA) is critically involved in the plasticity underlying fear-conditioned learning (Sah et al., 2008). Even though the majority of cells in the LA receive the necessary sensory inputs, potentiation in only a subset is required for fear learning to occur (Repa et al., 2001; Rumpel et al., 2005). These cells express active CREB (CAMP-responsive element-binding protein) (Han et al., 200, and this was related to the non-accommodating (nAC) spiking phenotype (Viosca et al., 2009; Zhou et al., 2009). In addition, a very recent study implicated recurrently connected cells of the LA in fear conditioned learning (Johnson et al., 2008). A link between the two observations has however never been made. In rats, we used an in vitro protocol of strong activation of the LA, resulting in bursting activity, which spread from the hippocampus to the LA. Within the LA, this activity reached all cells and spread via a multitude of pathways. Using this model, we were able to link, for the first time, recurrently connected cells in the LA with cells of the nAC phenotype. While we found a presynaptically expressed, protein synthesis independent decrease in inhibitory synaptic transmission in both nAC and accommodating (AC) cells, only nAC cells underwent a presynaptically induced and expressed, protein synthesis dependent potentiation. Moreover we observed an NMDA dependent hyperexcitability of the LA, with a preferential selection of nAC cells into burst generation. The transformation of a subset of AC cells into nAC cells accompanied this general increase in LA excitability. Given the considerable evidence suggesting a relationship between the central noradrenergic (NA) system and fear/anxiety states (Itoi, 2008), the effects of strong activation of the LA on the noradrenergic system were investigated, which revealed a loss of its modulatory actions on cell spiking patterns. Finally, we found changes in the expression levels of a number of genes; among which the one coding for $DNF, to be induced by strong activation of the LA. In view of the recently described link between nAC cells and expression of pCREB (phosphorylated cAMP-responsive element-binding protein) as well as the involvement of recurrently connected cells of the LA in fear-conditioned learning, our findings may provide a model of how potentiation of recurrent connections between nAC neurons underlies their recruitment into the fear memory trace. Additionally, they may offer clues as to the mechanisms through which a selected subset of neurons can be reactivated by smaller, previously ineffective external stimulations to respond with a sufficiently strong signal, which can be transmitted to downstream targets of the LA.
Resumo:
Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications.
Resumo:
This work is dedicated to investigation of the energy spectrum of one of the most anisotropic narrow-gap semiconductors, CdSb. At the beginning of the present studies even the model of its energy band structure was not clear. Measurements of galvanomagnetic effects in wide temperature range (1.6 - 300 K) and in magnetic fields up to 30 T were chosen for clarifying of the energy spectrum in the intentionally undoped CdSb single crystals and doped with shallow impurities (In, Ag). Detection of the Shubnikov - de Haas oscillations allowed estimating the fundamental energy spectrum parameters. The shapes of the Fermi surfaces of electrons (sphere) and holes (ellipsoid), the number of the equivalent extremums for valence band (2) and their positions in the Brillouin zone were determined for the first time in this work. Also anisotropy coefficients, components of the tensor of effective masses of carriers, effective masses of density of states, nonparabolicity of the conduction and valence bands, g-factor and its anisotropy for n- and p-CdSb were estimated for the first time during these studies. All the results obtained are compared with the cyclotron resonance data and the corresponding theoretical calculations for p-CdSb. This is basic information for the analyses of the complex transport properties of CdSb and for working out the energy spectrum model of the shallow energy levels of defects and impurities in this semiconductor. It was found out existence of different mechanisms of hopping conductivity in the presence of metal - insulator transition induced by magnetic field in n- and p-CdSb. Quite unusual feature opened in CdSb is that different types of hopping conductivity may take place in the same crystal depending on temperature, magnetic field or even orientation of crystal in magnetic field. Transport properties of undoped p-CdSb samples show that the anisotropy of the resistivity in weak and strong magnetic fields is determined completely by the anisotropy of the effective mass of the holes. Temperature and magnetic field dependence of the Hall coefficient and magnetoresistance is attributed to presence of two groups of holes with different concentrations and mobilities. The analysis demonstrates that below Tcr ~ 20 K and down to ~ 6 - 7 K the low-mobile carriers are itinerant holes with energy E2 ≈ 6 meV. The high-mobile carriers, at all temperatures T < Tcr, are holes activated thermally from a deeper acceptor band to itinerant states of a shallower acceptor band with energy E1 ≈ 3 meV. Analysis of temperature dependences of mobilities confirms the existence of the heavy-hole band or a non-equivalent maximum and two equivalent maxima of the light-hole valence band. Galvanomagnetic effects in n-CdSb reveal the existence of two groups of carriers. These are the electrons of a single minimum in isotropic conduction band and the itinerant electrons of the narrow impurity band, having at low temperatures the energies above the bottom of the conduction band. It is found that above this impurity band exists second impurity band of only localized states and the energy of both impurity bands depend on temperature so that they sink into the band gap when temperature is increased. The bands are splitted by the spin, and in strong magnetic fields the energy difference between them decreases and redistribution of the electrons between the two impurity bands takes place. Mobility of the conduction band carriers demonstrates that scattering in n-CdSb at low temperatures is strongly anisotropic. This is because of domination from scattering on the neutral impurity centers and increasing of the contribution to mobility from scattering by acoustic phonons when temperature increases. Metallic conductivity in zero or weak magnetic field is changed to activated conductivity with increasing of magnetic field. This exhibits a metal-insulator transition (MIT) induced by the magnetic field due to shift of the Fermi level from the interval of extended states to that of the localized states of the electron spectrum near the edge of the conduction band. The Mott variablerange hopping conductivity is observed in the low- and high-field intervals on the insulating side of the MIT. The results yield information about the density of states, the localization radius of the resonant impurity band with completely localized states and about the donor band. In high magnetic fields this band is separated from the conduction band and lies below the resonant impurity bands.
Resumo:
BACKGROUND & AIMS: Clostridium difficile-associated disease (CDAD) is the leading cause of nosocomial diarrhea in the United States. C difficile toxins TcdA and TcdB breach the intestinal barrier and trigger mucosal inflammation and intestinal damage. The inflammasome is an intracellular danger sensor of the innate immune system. In the present study, we hypothesize that TcdA and TcdB trigger inflammasome-dependent interleukin (IL)-1beta production, which contributes to the pathogenesis of CDAD. METHODS: Macrophages exposed to TcdA and TcdB were assessed for IL-1beta production, an indication of inflammasome activation. Macrophages deficient in components of the inflammasome were also assessed. Truncated/mutated forms of TcdB were assessed for their ability to activate the inflammasome. The role of inflammasome signaling in vivo was assessed in ASC-deficient and IL-1 receptor antagonist-treated mice. RESULTS: TcdA and TcdB triggered inflammasome activation and IL-1beta secretion in macrophages and human mucosal biopsy specimens. Deletion of Nlrp3 decreased, whereas deletion of ASC completely abolished, toxin-induced IL-1beta release. TcdB-induced IL-1beta release required recognition of the full-length toxin but not its enzymatic function. In vivo, deletion of ASC significantly reduced toxin-induced inflammation and damage, an effect that was mimicked by pretreatment with the IL-1 receptor antagonist anakinra. CONCLUSIONS: TcdA and TcdB trigger IL-1beta release by activating an ASC-containing inflammasome, a response that contributes to toxin-induced inflammation and damage in vivo. Pretreating mice with the IL-1 receptor antagonist anakinra afforded the same level of protection that was observed in ASC-/- mice. These data suggest that targeting inflammasome or IL-1beta signaling may represent new therapeutic targets in the treatment of CDAD.
Resumo:
Activity decreases, or deactivations, of midline and parietal cortical brain regions are routinely observed in human functional neuroimaging studies that compare periods of task-based cognitive performance with passive states, such as rest. It is now widely held that such task-induced deactivations index a highly organized"default-mode network" (DMN): a large-scale brain system whose discovery has had broad implications in the study of human brain function and behavior. In this work, we show that common task-induced deactivations from rest also occur outside of the DMN as a function of increased task demand. Fifty healthy adult subjects performed two distinct functional magnetic resonance imaging tasks that were designed to reliably map deactivations from a resting baseline. As primary findings, increases in task demand consistently modulated the regional anatomy of DMN deactivation. At high levels of task demand, robust deactivation was observed in non-DMN regions, most notably, the posterior insular cortex. Deactivation of this region was directly implicated in a performance-based analysis of experienced task difficulty. Together, these findings suggest that task-induced deactivations from rest are not limited to the DMN and extend to brain regions typically associated with integrative sensory and interoceptive processes.
Resumo:
BACKGROUND: Transcranial magnetic stimulation combined with electroencephalogram (TMS-EEG) can be used to explore the dynamical state of neuronal networks. In patients with epilepsy, TMS can induce epileptiform discharges (EDs) with a stochastic occurrence despite constant stimulation parameters. This observation raises the possibility that the pre-stimulation period contains multiple covert states of brain excitability some of which are associated with the generation of EDs. OBJECTIVE: To investigate whether the interictal period contains "high excitability" states that upon brain stimulation produce EDs and can be differentiated from "low excitability" states producing normal appearing TMS-EEG responses. METHODS: In a cohort of 25 patients with Genetic Generalized Epilepsies (GGE) we identified two subjects characterized by the intermittent development of TMS-induced EDs. The high-excitability in the pre-stimulation period was assessed using multiple measures of univariate time series analysis. Measures providing optimal discrimination were identified by feature selection techniques. The "high excitability" states emerged in multiple loci (indicating diffuse cortical hyperexcitability) and were clearly differentiated on the basis of 14 measures from "low excitability" states (accuracy = 0.7). CONCLUSION: In GGE, the interictal period contains multiple, quasi-stable covert states of excitability a class of which is associated with the generation of TMS-induced EDs. The relevance of these findings to theoretical models of ictogenesis is discussed.
Resumo:
The classical theory of collision induced emission (CIE) from pairs of dissimilar rare gas atoms was developed in Paper I [D. Reguera and G. Birnbaum, J. Chem. Phys. 125, 184304 (2006)] from a knowledge of the straight line collision trajectory and the assumption that the magnitude of the dipole could be represented by an exponential function of the inter-nuclear distance. This theory is extended here to deal with other functional forms of the induced dipole as revealed by ab initio calculations. Accurate analytical expression for the CIE can be obtained by least square fitting of the ab initio values of the dipole as a function of inter-atomic separation using a sum of exponentials and then proceeding as in Paper I. However, we also show how the multi-exponential fit can be replaced by a simpler fit using only two analytic functions. Our analysis is applied to the polar molecules HF and HBr. Unlike the rare gas atoms considered previously, these atomic pairs form stable bound diatomic molecules. We show that, interestingly, the spectra of these reactive molecules are characterized by the presence of multiple peaks. We also discuss the CIE arising from half collisions in excited electronic states, which in principle could be probed in photo-dissociation experiments.
Resumo:
The tumor suppressor gene product p53 plays an important role in the cellular response to DNA damage from exogenous chemical and physical mutagens. Therefore, we hypothesized that p53 performs a similar role in response to putative endogenous mutagens, such as nitric oxide (NO). We report here that exposure of human cells to NO generated from an NO donor or from overexpression of inducible nitric oxide synthase (NOS2) results in p53 protein accumulation. In addition, expression of wild-type (WT) p53 in a variety of human tumor cell lines, as well as murine fibroblasts, results in down-regulation of NOS2 expression through inhibition of the NOS2 promoter. These data are consistent with the hypothesis of a negative feedback loop in which endogenous NO-induced DNA damage results in WT p53 accumulation and provides a novel mechanism by which p53 safeguards against DNA damage through p53-mediated transrepression of NOS2 gene expression, thus reducing the potential for NO-induced DNA damage.
Resumo:
Molecular findings that confirmed the participation of ovine herpesvirus 2 (OVH-2) in the lesions that were consistent with those observed in malignant catarrhal fever of cattle are described. Three mixed-breed cattle from Rio Grande do Norte state demonstrated clinical manifestations that included mucopurulent nasal discharge, corneal opacity and motor incoordination. Routine necropsy examination demonstrated ulcerations and hemorrhage of the oral cavity, corneal opacity, and lymph node enlargement. Significant histopathological findings included widespread necrotizing vasculitis, non-suppurative meningoencephalitis, lymphocytic interstitial nephritis and hepatitis, and thrombosis. PCR assay performed on DNA extracted from kidney and mesenteric lymph node of one animal amplified a product of 423 base pairs corresponding to a target sequence within the ovine herpesvirus 2 (OVH-2) tegument protein gene. Direct sequencing of the PCR products, from extracted DNA of the kidney and mesenteric lymph node of one cow, amplified the partial nucleotide sequences (423 base pairs) of OVH-2 tegument protein gene. Blast analysis confirmed that these sequences have 98-100% identity with similar OVH-2 sequences deposited in GenBank. Phylogenetic analyses, based on the deduced amino acid sequences, demonstrated that the strain of OVH-2 circulating in ruminants from the Brazilian states of Rio Grande do Norte and Minas Gerais are similar to that identified in other geographical locations. These findings confirmed the active participation of OVH-2 in the classical manifestations of sheep associated malignant catarrhal fever.
Resumo:
The main purpose of the present doctoral thesis is to investigate subjective experiences and cognitive processes in four different types of altered states of consciousness: naturally occurring dreaming, cognitively induced hypnosis, pharmacologically induced sedation, and pathological psychosis. Both empirical and theoretical research is carried out, resulting in four empirical and four theoretical studies. The thesis begins with a review of the main concepts used in consciousness research, the most influential philosophical and neurobiological theories of subjective experience, the classification of altered states of consciousness, and the main empirical methods used to study consciousness alterations. Next, findings of the original studies are discussed, as follows. Phenomenal consciousness is found to be dissociable from responsiveness, as subjective experiences do occur in unresponsive states, including anaesthetic-induced sedation and natural sleep, as demonstrated by post-awakening subjective reports. Two new tools for the content analysis of subjective experiences and dreams are presented, focusing on the diversity, complexity and dynamics of phenomenal consciousness. In addition, a new experimental paradigm of serial awakenings from non-rapid eye movement sleep is introduced, which enables more rapid sampling of dream reports than has been available in previous studies. It is also suggested that lucid dreaming can be studied using transcranial brain stimulation techniques and systematic analysis of pre-lucid dreaming. For blind judges, dreams of psychotic patients appear to be indistinguishable from waking mentation reports collected from the same patients, which indicates a close resemblance of these states of mind. However, despite phenomenological similarities, dreaming should not be treated as a uniform research model of psychotic or intact consciousness. Contrary to this, there seems to be a multiplicity of routes of how different states of consciousness can be associated. For instance, seemingly identical time perception distortions in different alterations of consciousness may have diverse underlying causes for these distortions. It is also shown that altered states do not necessarily exhibit impaired cognitive processing compared to a baseline waking state of consciousness: a case study of time perception in a hypnotic virtuoso indicates a more consistent perceptual timing under hypnosis than in a waking state. The thesis ends with a brief discussion of the most promising new perspectives for the study of alterations of consciousness.
Resumo:
Until recently, dietary sources of nucleotides were thought not to be essential for good nutrition. Certain states with higher metabolic demands may require larger amounts that cannot be provided by endogenous production. The objective of the present study was to determine the action of nucleotides on the recovery from lactose-induced diarrhea in weaned rats. Thirty-six weanling Fisher rats were divided into two groups. Group 1 received a standard diet and group 2 received a diet containing lactose in place of starch. On the 10th day, six animals per group were sacrificed for histopathological evaluation. The remaining animals were divided into two other subgroups, each with 6 animals, receiving a control diet, a control diet with nucleotides (0.05% adenosine monophosphate, 0.05% guanosine monophosphate, 0.05% cytidine monophosphate, 0.05% uridine monophosphate and 0.05% inosine monophosphate), a diet with lactose, and a diet with lactose and nucleotides. On the 32nd day of the experiment all animals were sacrificed. Animals with diarrhea weighed less than animals without diarrhea. The introduction of nucleotides did not lead to weight gain. Mean diet consumption was lower in the group that continued to ingest lactose, with the group receiving lactose plus nucleotides showing a lower mean consumption. Animals receiving lactose had inflammatory reaction and deposits of periodic acid-Schiff-positive material in intestinal, hepatic and splenic tissues. The introduction of nucleotides led to an improvement of the intestinal inflammatory reaction. In lactose-induced diarrhea, when the stimulus is maintained - lactose overload - the nucleotides have a limited action on the weight gain and on recovery of intestinal morphology, although they have a protective effect on hepatic injury and improve the inflammatory response.
Resumo:
The interaction between pulmonary ventilation (V E) and body temperature (Tb) is essential for O2 delivery to match metabolic rate under varying states of metabolic demand. Hypoxia causes hyperventilation and anapyrexia (a regulated drop in Tb), but the neurotransmitters responsible for this interaction are not well known. Since L-glutamate is released centrally in response to peripheral chemoreceptor stimulation and glutamatergic receptors are spread in the central nervous system we tested the hypothesis that central L-glutamate mediates the ventilatory and thermal responses to hypoxia. We measured V E and Tb in 40 adult male Wistar rats (270 to 300 g) before and after intracerebroventricular injection of kynurenic acid (KYN, an ionotropic glutamatergic receptor antagonist), alpha-methyl-4-carboxyphenylglycine (MCPG, a metabotropic glutamatergic receptor antagonist) or vehicle (saline), followed by a 1-h period of hypoxia (7% inspired O2) or normoxia (humidified room air). Under normoxia, KYN (N = 5) or MCPG (N = 8) treatment did not affect V E or Tb compared to saline (N = 6). KYN and MCPG injection caused a decrease in hypoxia-induced hyperventilation (595 ± 49 for KYN, N = 7 and 525 ± 84 ml kg-1 min-1 for MCPG, N = 6; P < 0.05) but did not affect anapyrexia (35.3 ± 0.2 for KYN and 34.7 ± 0.4ºC for MCPG) compared to saline (912 ± 110 ml kg-1 min-1 and 34.8 ± 0.2ºC, N = 8). We conclude that glutamatergic receptors are involved in hypoxic hyperventilation but do not affect anapyrexia, indicating that L-glutamate is not a common mediator of this interaction.
Resumo:
Few vaccines in history have induced such a dramatic decline in incidence over such a short period of time as the Haemophilus influenzae type b (Hib) conjugate. This vaccine was introduced in 1988 in the United States, but only in 1999 was Hib immunization introduced by the Brazilian Ministry of Health as part of the routine infant National Immunization Program. The authors analyzed 229 H. influenzae (Hi) isolates from Public Health Laboratories in three Brazilian states: Pernambuco (Northeast, N = 54), Santa Catarina (South, N = 19), and Rio de Janeiro (Southeast, N = 156). The isolates were collected from Brazilian children 0-10 years of age with meningitis and other infections from 1990 to 2003 and were part of the research collection of the National Institute of Quality Control in Health, FIOCRUZ. Bacterial strains were characterized by serotyping and biotyping. During the pre-vaccination period the prevalence infection due to Hib was of 165 isolates and only 2 non-b Hi among all the notified meningitis infections caused by Hi. Our results showed a significant decrease in the prevalence of Hib meningitis from 165 to 33 isolates after 1999. However, during the post-vaccination period of 2001-2003 we observed an increase in the number of non-b Hi isolates: only 2 non-b strains isolated from 1990 to 1999 and 29 from 1999 to 2003. Based on the present data, the authors emphasize the need for more sensitive epidemiological and bacteriological studies aiming the improvement of the available Hib vaccine, in order to protect the susceptible population to infections due to other serological types of Hi and the reevaluation of immunization schedules used by the National Immunization Program.