994 resultados para Hydrologic sciences
Resumo:
The 21st century poses many challenges for global sustainability. Among them, most importantly, the human race will encounter scarcity of raw materials and conventional energy resources. And, India may have to take the brunt of these problems as it is going to be the most populated region of the world with concomitant increase in energy demand and requirement of other resources. India will be the testing ground for introducing newer ways of green technology and innovative principles of resource management and utilization. With the vagaries of potential climate change gathering clouds in the background, Earth sciences will have a special and predominant role in guiding the society in prioritizing our resource discovery, utilization and their consumption and the upkeep of environment. On the fundamental level, Earth sciences are going through a most exciting phase of development as a born-again science. Technological breakthroughs including the satellite-based observations augur well for gaining new insights into Earth processes. A set of exciting fundamental problems that are globally identified will set the stage for an exhilarating period of new discoveries. Improvements in numerical and computer-based techniques will assist in modelling of Earth processes to unprecedented levels. India will have to take special effort in improving the existing experimentation facilities in the Earth science departments of the country, and also the general level of Earth science education to meet the global standards. This article presents an Earth science vision for the 21st century in an Indian context.
Resumo:
In a detailed model for reservoir irrigation taking into account the soil moisture dynamics in the root zone of the crops, the data set for reservoir inflow and rainfall in the command will usually be of sufficient length to enable their variations to be described by probability distributions. However, the potential evapotranspiration of the crop itself depends on the characteristics of the crop and the reference evaporation, the quantification of both being associated with a high degree of uncertainty. The main purpose of this paper is to propose a mathematical programming model to determine the annual relative yield of crops and to determine its reliability, for a single reservoir meant for irrigation of multiple crops, incorporating variations in inflow, rainfall in the command area, and crop consumptive use. The inflow to the reservoir and rainfall in the reservoir command area are treated as random variables, whereas potential evapotranspiration is modeled as a fuzzy set. The model's application is illustrated with reference to an existing single-reservoir system in Southern India.
Resumo:
A study of environmental chloride and groundwater balance has been carried out in order to estimate their relative value for measuring average groundwater recharge under a humid climatic environment with a relatively shallow water table. The hybrid water fluctuation method allowed the split of the hydrologic year into two seasons of recharge (wet season) and no recharge (dry season) to appraise specific yield during the dry season and, second, to estimate recharge from the water table rise during the wet season. This well elaborated and suitable method has then been used as a standard to assess the effectiveness of the chloride method under forest humid climatic environment. Effective specific yield of 0.08 was obtained for the study area. It reflects an effective basin-wide process and is insensitive to local heterogeneities in the aquifer system. The hybrid water fluctuation method gives an average recharge value of 87.14 mm/year at the basin scale, which represents 5.7% of the annual rainfall. Recharge value estimated based on the chloride method varies between 16.24 and 236.95 mm/year with an average value of 108.45 mm/year. It represents 7% of the mean annual precipitation. The discrepancy observed between recharge value estimated by the hybrid water fluctuation and the chloride mass balance methods appears to be very important, which could imply the ineffectiveness of the chloride mass balance method for this present humid environment.
Resumo:
In a statistical downscaling model, it is important to remove the bias of General Circulations Model (GCM) outputs resulting from various assumptions about the geophysical processes. One conventional method for correcting such bias is standardisation, which is used prior to statistical downscaling to reduce systematic bias in the mean and variances of GCM predictors relative to the observations or National Centre for Environmental Prediction/ National Centre for Atmospheric Research (NCEP/NCAR) reanalysis data. A major drawback of standardisation is that it may reduce the bias in the mean and variance of the predictor variable but it is much harder to accommodate the bias in large-scale patterns of atmospheric circulation in GCMs (e.g. shifts in the dominant storm track relative to observed data) or unrealistic inter-variable relationships. While predicting hydrologic scenarios, such uncorrected bias should be taken care of; otherwise it will propagate in the computations for subsequent years. A statistical method based on equi-probability transformation is applied in this study after downscaling, to remove the bias from the predicted hydrologic variable relative to the observed hydrologic variable for a baseline period. The model is applied in prediction of monsoon stream flow of Mahanadi River in India, from GCM generated large scale climatological data.
Resumo:
Feature selection is an important first step in regional hydrologic studies (RHYS). Over the past few decades, advances in data collection facilities have resulted in development of data archives on a variety of hydro-meteorological variables that may be used as features in RHYS. Currently there are no established procedures for selecting features from such archives. Therefore, hydrologists often use subjective methods to arrive at a set of features. This may lead to misleading results. To alleviate this problem, a probabilistic clustering method for regionalization is presented to determine appropriate features from the available dataset. The effectiveness of the method is demonstrated by application to regionalization of watersheds in conterminous United States for low flow frequency analysis. Plausible homogeneous regions that are formed by using the proposed clustering method are compared with those from conventional methods of regionalization using L-moment based homogeneity tests. Results show that the proposed methodology is promising for RHYS.
Resumo:
The continuing low-level seismicity in the vicinity of the Idukki Reservoir, Kerala, is interesting from the perspective of hydrologically triggered earthquakes. While the frequency of triggered earthquakes in the vicinity of a reservoir usually reduces with time and the largest earthquake usually occurs within a few years on the initial filling, the triggered seismicity in the proximity of the Idukki Reservoir seems to be showing a second, delayed peak, as the 1977 (M 3.5) tremor was followed by a slightly larger event in 2011, 24 years after the first burst of activity. Quite unprecedented in the context of reservoir-triggered sequences, we consider this delayed sequence as the hydrologic response of a critically stressed hypocentral region, to monsoonal recharging. The sustained activity several decades after the impoundment and the temporal relation with the monsoon suggest that at least some parts of the reservoir region continue to retain the potential for low-level seismic activity in response to hydrologic cycles.
Resumo:
The main objective of the study is to examine the accuracy of and differences among simulated streamflows driven by rainfall estimates from a network of 22 rain gauges spread over a 2,170 km2 watershed, NEXRAD Stage III radar data, and Tropical Rainfall Measuring Mission (TRMM) 3B42 satellite data. The Gridded Surface Subsurface Hydrologic Analysis (GSSHA), a physically based, distributed parameter, grid-structured, hydrologic model, was used to simulate the June-2002 flooding event in the Upper Guadalupe River watershed in south central Texas. There were significant differences between the rainfall fields estimated by the three types of measurement technologies. These differences resulted in even larger differences in the simulated hydrologic response of the watershed. In general, simulations driven by radar rainfall yielded better results than those driven by satellite or rain-gauge estimates. This study also presents an overview of effects of land cover changes on runoff and stream discharge. The results demonstrate that, for major rainfall events similar to the 2002 event, the effect of urbanization on the watershed in the past two decades would not have made any significant effect on the hydrologic response. The effect of urbanization on the hydrologic response increases as the size of the rainfall event decreases.
Resumo:
Climate change would significantly affect many hydrologic systems, which in turn would affect the water availability, runoff, and the flow in rivers. This study evaluates the impacts of possible future climate change scenarios on the hydrology of the catchment area of the TungaBhadra River, upstream of the Tungabhadra dam. The Hydrologic Engineering Center's Hydrologic Modeling System version 3.4 (HEC-HMS 3.4) is used for the hydrological modelling of the study area. Linear-regression-based Statistical DownScaling Model version 4.2 (SDSM 4.2) is used to downscale the daily maximum and minimum temperature, and daily precipitation in the four sub-basins of the study area. The large-scale climate variables for the A2 and B2 scenarios obtained from the Hadley Centre Coupled Model version 3 are used. After model calibration and testing of the downscaling procedure, the hydrological model is run for the three future periods: 20112040, 20412070, and 20712099. The impacts of climate change on the basin hydrology are assessed by comparing the present and future streamflow and the evapotranspiration estimates. Results of the water balance study suggest increasing precipitation and runoff and decreasing actual evapotranspiration losses over the sub-basins in the study area.
Resumo:
General circulation models (GCMs) are routinely used to simulate future climatic conditions. However, rainfall outputs from GCMs are highly uncertain in preserving temporal correlations, frequencies, and intensity distributions, which limits their direct application for downscaling and hydrological modeling studies. To address these limitations, raw outputs of GCMs or regional climate models are often bias corrected using past observations. In this paper, a methodology is presented for using a nested bias-correction approach to predict the frequencies and occurrences of severe droughts and wet conditions across India for a 48-year period (2050-2099) centered at 2075. Specifically, monthly time series of rainfall from 17 GCMs are used to draw conclusions for extreme events. An increasing trend in the frequencies of droughts and wet events is observed. The northern part of India and coastal regions show maximum increase in the frequency of wet events. Drought events are expected to increase in the west central, peninsular, and central northeast regions of India. (C) 2013 American Society of Civil Engineers.
Resumo:
General circulation models (GCMs) use transient climate simulations to predict climate conditions in the future. Coarse-grid resolutions and process uncertainties necessitate the use of downscaling models to simulate precipitation. However, in the downscaling models, with multiple GCMs now available, selecting an atmospheric variable from a particular model which is representative of the ensemble mean becomes an important consideration. The variable convergence score (VCS) provides a simple yet meaningful approach to address this issue, providing a mechanism to evaluate variables against each other with respect to the stability they exhibit in future climate simulations. In this study, VCS methodology is applied to 10 atmospheric variables of particular interest in downscaling precipitation over India and also on a regional basis. The nested bias-correction methodology is used to remove the systematic biases in the GCMs simulations, and a single VCS curve is developed for the entire country. The generated VCS curve is expected to assist in quantifying the variable performance across different GCMs, thus reducing the uncertainty in climate impact-assessment studies. The results indicate higher consistency across GCMs for pressure and temperature, and lower consistency for precipitation and related variables. Regional assessments, while broadly consistent with the overall results, indicate low convergence in atmospheric attributes for the Northeastern parts of India.
Resumo:
Developments in the statistical extreme value theory, which allow non-stationary modeling of changes in the frequency and severity of extremes, are explored to analyze changes in return levels of droughts for the Colorado River. The transient future return levels (conditional quantiles) derived from regional drought projections using appropriate extreme value models, are compared with those from observed naturalized streamflows. The time of detection is computed as the time at which significant differences exist between the observed and future extreme drought levels, accounting for the uncertainties in their estimates. Projections from multiple climate model-scenario combinations are considered; no uniform pattern of changes in drought quantiles is observed across all the projections. While some projections indicate shifting to another stationary regime, for many projections which are found to be non-stationary, detection of change in tail quantiles of droughts occurs within the 21st century with no unanimity in the time of detection. Earlier detection is observed in droughts levels of higher probability of exceedance. (C) 2014 Elsevier Ltd. All rights reserved.