925 resultados para Hydrogen fuel cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PtRu/C electrocatalyst with high loading (PtRu of 60 wt%) was prepared by synergetic effect of ultrasonic radiation and mechanical stirring. Physicochemical characterizations show that the size of PtRu particles of as-prepared PtRu/C catalyst is only several nanometers (2-4 nm), and the PtRu nanoparticles were homogeneously dispersed on carbon surface. Electrochemistry and single passive direct methanol fuel cell (DMFC) tests indicate that the as-prepared PtRu/C electrocatalyst possessed larger electrochemical active surface (EAS) area and enhanced electrocatalytic activity for methanol oxidation reaction (MOR). The enhancement could be attributed to the synergetic effect of ultrasound radiation and mechanical stirring, which can avoid excess concentration of partial solution and provide a uniform environment for the nucleation and growth of metal particles simultaneously hindering the agglomeration of PtRu particles on carbon surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As inorganic proton conductors. phosphomolybdic acid (PMA), phosphotungstic acid (PWA) and silicotungstic acid (SiWA) are extremely attractive for proton-conducting composite membranes. An interesting phenomenon has been found in our previous experiments that the mixing of chitosan (CS) solution and different heteropolyacids (HPAs) leads to strong electrostatic interaction to form insoluble complexes. These complexes in the form of membrane (CS/PMA, CS/PWA and CS/SiWA composite membranes) have been prepared and evaluated as novel proton-conducting membranes for direct methanol fuel cells. Therefore, HPAs can be immobilized within the membranes through electrostatic interaction, which overcomes the leakage problem from membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The controllable synthesis of nanosized carbon-supported Pd catalysts through a surface replacement reaction (SRR) method is reported in this paper. Depending on the synthesis conditions the Pd can be formed on Co nanoparticles surface in hollow nanospheres or nanoparticles structures. Citrate anion acts as a stabilizer for the nanostructures, and protonation of the third carboxyl anion and hence the nanostructure and size of the resulting catalysts are controlled via the pH of the synthesis solution. Pd hollow nanospheres, containing smaller Pd nanoparticles, supported on carbon are formed under the condition of pH 9 reaction solution. Meanwhile, highly dispersed carbon-supported Pd nanoparticles can be formed with higher pH (pH >= 10). All catalysts prepared through the SRR method show enhanced activities for the HCOOH electro-oxidation reaction compared to catalysts reduced by NaBH4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, it is reported for the first time that a carbon-supported Au (Au/C) catalyst for the cathodic catalyst in a direct formic acid fuel cell (DFAFC) was prepared using a polyvinyl alcohol (PVA) protection method. The results indicated that for oxygen reduction, the electrocatalytic activity of the Au/C catalyst prepared with the PVA protection method is much better than that of a Au/C catalyst prepared with the pre-precipitation method. This is due to the small average size and low relative crystallinity of the An particles in the Au/C catalyst prepared by the PVA protection method, compared to that of the Au/C catalyst prepared by the pre-precipitation method, illustrating that the average size and the relative crystallinity of the ALL particles has an effect on the electrocatalytic activity of the Au/C catalyst for oxygen reduction. In addition, because An has no electrocatalytic activity for the oxidation of formic acid, the Au/C catalyst possesses a high formic acid tolerance. After the electrocatalytic activity of the Au/C catalyst for the oxygen reduction is improved, it is suitable to be used as the cathodic catalyst in DFAFC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method was developed to prepare the highly active Pt-Ru-P/C catalyst. The deposition of phosphorus significantly increased electrochemical active surface (EAS) area of catalyst by reduces Pt-Ru particle size. TEM images show that Pt-Ru-P nanoparticles have an uniform size distribution with an average diameter of 2 nm. Cyclic voltammetry (CV), Chronoamperometry (CA), and CO stripping indicate that the presence of non-metal phosphorus as an interstitial species Pt-Ru-P/C catalyst shows high activity for the electro-oxidation of methanol, and exhibit enhanced performance in the oxidation of carbon monoxide compared with Pt-Ru/C catalyst. At 30 degrees C and pure oxygen was fed to the cathode, the maximum power density of direct methanol fuel cell (DMFC) with Pt-Ru-P/C and Pt-Ru/C catalysts as anode catalysts was 61.5 mW cm(-2) and 36.6 mW cm(-2), respectively. All experimental results indicate that Pt-Ru-P/C catalyst was the optimum anode catalyst for direct methanol fuel cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, it is reported for the first time that a carbon-supported Pd-P (Pd-P/C) catalyst for the anodic catalyst in the direct formic acid fuel cell (DFAFC) can be prepared. The Pd-P/C catalyst shows that its electrocatalytic activity and especially its stability for the oxidation of formic acid are much higher than that of a Pd/C catalyst. Therefore, the Pd-P/C catalyst may have practical applications in DFAFCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An additional anode catalyst layer with PtRu/C was hot pressed between two Nafion (R) 112 membranes and a conventional direct methanol fuel cell (DMFC) cathode/membrane/anode assembly with the above membranes as separator was fabricated. The additional catalyst layer formed an assistant cell with the cathode to prevent methanol crossover. A simple one-dimensional mathematical model was presented to describe the performance of this new type of membrane electrode assembly system. As seen from both experimental result and model analysis, the additional catalyst layer can not only effectively prevent the methanol crossover, but also generate electrical power with the crossover methanol. The percentage of output power of the assistant cell to the total power analyzed by the model is about 40% under usual condition, which is much higher than that from experimental result, indicating the potential of the development in the DMFC designing. It was also discovered that the electrical power generated from the assistant cell with crossover methanol could take higher percentage in total electrical power when the main DMFC current density became lower.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pt/C catalysts were prepared with pine active carbon and Vulcan XC-72 active carbon as the supports. The performances of the Pt/C catalysts in polymer electrolyte membrane fuel cell were compared. The result indicates that the performance of Pt/Vulcan XC-72 is better than that of Pt/pine. The physical and chemical properties of the two active carbons were measured using several analysis techniques. It was found that the pore size, specific conductivity and the surface function group significantly influence the performance of the electrocatalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A supported lanthanum gallate (LSGM) electrolyte thin-film solid oxide fuel cell with Ni-YSZ cermet anode and strontium-doped lanthanum manganite (LSM)-yttria stabilized zirconia (YSZ) composite cathode was, for the first time, fabricated and tested. The cell was prepared by an unconventional approach, in which an LSGM thin film (about 15 mum thick) was first deposited on a porous substrate such as a porous YSZ disk by a wet process and sintered at a high temperature (above 1400degrees C). NiO was then incorporated into the porous substrate by a carefully controlled impregnation process and fired at a much lower temperature. In this way, the severe reaction between LSGM and NiO at a high temperature, which is required for the full densification of LSGM film, can be avoided. A strontium-doped LaMnO3 (LSM)-YSZ composite cathode was screen printed on the surface of the LSGM film and then fired at 1250degrees C. The electrolyte resistances of the SOFC single cells fabricated by this approach are much lower compared to those of thick LSGM film supported cells. A maximum output power density of over 0.85 W/cm(2) at 800degreesC with H-2 as fuel and air as oxidant for a fabricated cell was achieved. (C) 2002 The Electrochemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct methanol fuel cells (DMFCs) consisting of multi-layer electrodes provide higher performance than those with the traditional electrode. The new electrode structure includes a hydrophilic thin film and a traditional catalyst layer. A decal transfer method was used to apply the thin film to the Nafion(R) membrane. Results show that the performance of a cell with the hydrophilic thin film is obviously enhanced. A cell with the optimal thin film electrode structure operating at I M CH3OH, 2 atm oxygen and 90degreesC yields a current density of 100 mA/cm(2) at 0.53 V cell voltage. The peak power density is 120 mW/cm(2). The performance stability of a cell in a short-term life operation was also increased when the hydrophilic thin film was employed. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed ionic-electronic conducting (MIEC) oxides, SrFeCo0.5Ox, SrCo0.8Fe0.2O3-delta and La0.6Sr0.4Fe0.8Co0.2O3-delta have been synthesized and prepared on yttria-stabilized zirconia as anodes for solid oxide fuel cells. Power output measurements show that the anodes composed of such kinds of oxides exhibit modest electrochemical activities to both H-2 and CH4 fuels, giving maximum power densities of around 0.1 W/cm(2) at 950 degrees C. Polarization and AC impedance measurements found that large activation overpotentials and ohmic resistance drops were the main causes for the relative inferior performance to the Ni-YSZ anode. While interlayered with an Ni-YSZ anode, a significant improvement in the electrochemical performance was observed. in particular, for the SrFeCo0.5Ox oxide interlayered Ni-YSZ anode, the maximum power output reaches 0.25 W/cm2 on CH,, exceeding those of both SrFeCo0.5Ox and the Ni-YSZ, as anodes alone. A synergetic effect of SrFeCo0.5Ox and the Ni-YSZ has been observed. Future work is needed to examine the long-term stability of MIEC oxide electrodes under a very reducing environment. (C) 1999 Elsevier Science B.V. All rights reserved.