947 resultados para Human detection
Resumo:
BACKGROUND: Ultra high throughput sequencing (UHTS) technologies find an important application in targeted resequencing of candidate genes or of genomic intervals from genetic association studies. Despite the extraordinary power of these new methods, they are still rarely used in routine analysis of human genomic variants, in part because of the absence of specific standard procedures. The aim of this work is to provide human molecular geneticists with a tool to evaluate the best UHTS methodology for efficiently detecting DNA changes, from common SNPs to rare mutations. METHODOLOGY/PRINCIPAL FINDINGS: We tested the three most widespread UHTS platforms (Roche/454 GS FLX Titanium, Illumina/Solexa Genome Analyzer II and Applied Biosystems/SOLiD System 3) on a well-studied region of the human genome containing many polymorphisms and a very rare heterozygous mutation located within an intronic repetitive DNA element. We identify the qualities and the limitations of each platform and describe some peculiarities of UHTS in resequencing projects. CONCLUSIONS/SIGNIFICANCE: When appropriate filtering and mapping procedures are applied UHTS technology can be safely and efficiently used as a tool for targeted human DNA variations detection. Unless particular and platform-dependent characteristics are needed for specific projects, the most relevant parameter to consider in mainstream human genome resequencing procedures is the cost per sequenced base-pair associated to each machine.
Resumo:
Typical human immunodeficiency virus-1 subtype B (HIV-1B) sequences present a GPGR signature at the tip of the variable region 3 (V3) loop; however, unusual motifs harbouring a GWGR signature have also been isolated. Although epidemiological studies have detected this variant in approximately 17-50% of the total infections in Brazil, the prevalence of B"-GWGR in the southernmost region of Brazil is not yet clear. This study aimed to investigate the C2-V3 molecular diversity of the HIV-1B epidemic in southernmost Brazil. HIV-1 seropositive patients were ana-lysed at two distinct time points in the state of Rio Grande do Sul (RS98 and RS08) and at one time point in the state of Santa Catarina (SC08). Phylogenetic analysis classified 46 individuals in the RS98 group as HIV-1B and their molecular signatures were as follows: 26% B"-GWGR, 54% B-GPGR and 20% other motifs. In the RS08 group, HIV-1B was present in 32 samples: 22% B"-GWGR, 59% B-GPGR and 19% other motifs. In the SC08 group, 32 HIV-1B samples were found: 28% B"-GWGR, 59% B-GPGR and 13% other motifs. No association could be established between the HIV-1B V3 signatures and exposure categories in the HIV-1B epidemic in RS. However, B-GPGR seemed to be related to heterosexual individuals in the SC08 group. Our results suggest that the established B"-GWGR epidemics in both cities have similar patterns, which is likely due to their geographical proximity and cultural relationship.
Resumo:
Women infected with human papillomavirus (HPV) are at a higher risk of developing cervical lesions. In the current study, self and clinician-collected vaginal and cervical samples from women were processed to detect HPV DNA using polymerase chain reaction (PCR) with PGMY09/11 primers. HPV genotypes were determined using type-specific PCR. HPV DNA detection showed good concordance between self and clinician-collected samples (84.6%; kappa = 0.72). HPV infection was found in 30% women and genotyping was more concordant among high-risk HPV (HR-HPV) than low-risk HPV (HR-HPV). HPV16 was the most frequently detected among the HR-HPV types. LR-HPV was detected at a higher frequency in self-collected; however, HR-HPV types were more frequently identified in clinician-collected samples than in self-collected samples. HPV infections of multiple types were detected in 20.5% of clinician-collected samples and 15.5% of self-collected samples. In this study, we demonstrated that the HPV DNA detection rate in self-collected samples has good agreement with that of clinician-collected samples. Self-collected sampling, as a primary prevention strategy in countries with few resources, could be effective for identifying cases of HR-HPV, being more acceptable. The use of this method would enhance the coverage of screening programs for cervical cancer.
Resumo:
We studied the influence of signal variability on human and model observers for detection tasks with realistic simulated masses superimposed on real patient mammographic backgrounds and synthesized mammographic backgrounds (clustered lumpy backgrounds, CLB). Results under the signal-known-exactly (SKE) paradigm were compared with signal-known-statistically (SKS) tasks for which the observers did not have prior knowledge of the shape or size of the signal. Human observers' performance did not vary significantly when benign masses were superimposed on real images or on CLB. Uncertainty and variability in signal shape did not degrade human performance significantly compared with the SKE task, while variability in signal size did. Implementation of appropriate internal noise components allowed the fit of model observers to human performance.
Resumo:
Human herpesvirus 6 (HHV-6) may cause severe complications after haematopoietic stem cell transplantation (HSCT). Monitoring this virus and providing precise, rapid and early diagnosis of related clinical diseases, constitute essential measures to improve outcomes. A prospective survey on the incidence and clinical features of HHV-6 infections after HSCT has not yet been conducted in Brazilian patients and the impact of this infection on HSCT outcome remains unclear. A rapid test based on real-time quantitative polymerase chain reaction (qPCR) has been optimised to screen and quantify clinical samples for HHV-6. The detection step was based on reaction with TaqMan® hydrolysis probes. A set of previously described primers and probes have been tested to evaluate efficiency, sensitivity and reproducibility. The target efficiency range was 91.4% with linearity ranging from 10-106 copies/reaction and a limit of detection of five copies/reaction or 250 copies/mL of plasma. The qPCR assay developed in the present study was simple, rapid and sensitive, allowing the detection of a wide range of HHV-6 loads. In conclusion, this test may be useful as a practical tool to help elucidate the clinical relevance of HHV-6 infection and reactivation in different scenarios and to determine the need for surveillance.
Resumo:
Background: Two genes are called synthetic lethal (SL) if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited to inference methods. Results: In the present work, we use phylogenetic analysis and database manipulation (BioGRID for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes) in order to reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on cancer mutated genes (COSMIC and Cancer Gene Census databases) as well as on existent approved drugs (DrugBank database) supports our selection of cancer-therapy candidates.Conclusions: Our work provides a complementary alternative to the current methods for drug discovering and gene target identification in anti-cancer research. Novel SL screening analysis and the use of highly curated databases would contribute to improve the results of this methodology.
Resumo:
During the development and testing of a radioreceptor assay (RRA) for human IL-1, we have detected and identified the presence of auto-antibodies to IL-1 in normal human plasma (NHP). The RRA is based on the competition between human 125I-labeled rIL-1 alpha and standard or unknown quantities of IL-1 alpha or IL-1 beta for binding to a limited amounts of IL-1 receptor (IL-1R) isolated from the EL4 mouse thymoma cell line. NHP from 20 out of 100 unselected blood donors were found to completely inhibit the binding of 125I-labeled IL-1 alpha to its receptor, suggesting the presence in these NHP samples of either abnormal amounts of IL-1 or of a factor binding to the 125I-labeled IL-1 alpha. Special care was taken to ascertain that the inhibitory factors were antibodies and not soluble IL-1 receptor antagonist. When plasma samples with inhibiting activity were incubated with labeled IL-1 alpha and chromatographed on a Sephadex G200 column, they were found to contain 125I-labeled complexes with an apparent molecular weight of 150-200kD. The IL-1 binding factor could be eliminated from plasma by incubation with protein A-Sepharose, suggesting that it consisted in IgG antibodies directed against IL-1. Furthermore, the antibody nature of the inhibiting factor was confirmed by its binding to purified rIL-1 coupled to Sepharose. Screening of 200 NHP samples by incubation with 100 pg of 125I-labeled IL-1 followed by precipitation with 12% of polyethylene glycol (PEG) confirmed that about 25% of NHP contain detectable IgG antibodies to IL-1 alpha, while only 2% of NHP contain antibodies to IL-1 beta. No correlation between the presence of these anti-IL-1 antibodies and any particular major histocompatibility complex or any pathological conditions was detected. We suggest that all serum samples assayed for IL-1 alpha or IL-1 beta content should be pretested with the PEG precipitation assay described here.
Resumo:
Neural signatures of humans' movement intention can be exploited by future neuroprosthesis. We propose a method for detecting self-paced upper limb movement intention from brain signals acquired with both invasive and noninvasive methods. In the first study with scalp electroencephalograph (EEG) signals from healthy controls, we report single trial detection of movement intention using movement related potentials (MRPs) in a frequency range between 0.1 to 1 Hz. Movement intention can be detected above chance level (p<0.05) on average 460 ms before the movement onset with low detection rate during the on-movement intention period. Using intracranial EEG (iEEG) from one epileptic subject, we detect movement intention as early as 1500 ms before movement onset with accuracy above 90% using electrodes implanted in the bilateral supplementary motor area (SMA). The coherent results obtained with non-invasive and invasive method and its generalization capabilities across different days of recording, strengthened the theory that self-paced movement intention can be detected before movement initiation for the advancement in robot-assisted neurorehabilitation.
Resumo:
Paul Ehrlich's inspired concept of 'magic bullets' for the cure of diseases has been revitalized by recent advances in immunology1. In particular, the development of cell fusion technology allowing the production of monoclonal antibodies (Mabs) with exquisite specificities2 triggered new hopes that we may now have the perfect carrier molecules with which to deliver cytotoxic drugs3 or toxins4 to the hidden cancer cells. This article reviews data on one aspect of the magic bullet concept, the use of radiolabelled antibodies as tracers for tumour localization. It will also discuss the very recent clinical use of 131I-labelled Mabs against carcinoembryonic antigen (CEA)5 to detect carcinoma either by conventional external photoscanning or by single photon emission computerized tomography (SPELT). This alliance of the most modern tools from immunology (Mabs) and nuclear medicine (SPELT) appears promising as a way to improve the sensitivity of 'immunoscintigraphy'. However, this approach is not yet ready, for widespread clinical use.
Resumo:
BACKGROUND: Active screening by mobile teams is considered the best method for detecting human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense but the current funding context in many post-conflict countries limits this approach. As an alternative, non-specialist health care workers (HCWs) in peripheral health facilities could be trained to identify potential cases who need testing based on their symptoms. We explored the predictive value of syndromic referral algorithms to identify symptomatic cases of HAT among a treatment-seeking population in Nimule, South Sudan. METHODOLOGY/PRINCIPAL FINDINGS: Symptom data from 462 patients (27 cases) presenting for a HAT test via passive screening over a 7 month period were collected to construct and evaluate over 14,000 four item syndromic algorithms considered simple enough to be used by peripheral HCWs. For comparison, algorithms developed in other settings were also tested on our data, and a panel of expert HAT clinicians were asked to make referral decisions based on the symptom dataset. The best performing algorithms consisted of three core symptoms (sleep problems, neurological problems and weight loss), with or without a history of oedema, cervical adenopathy or proximity to livestock. They had a sensitivity of 88.9-92.6%, a negative predictive value of up to 98.8% and a positive predictive value in this context of 8.4-8.7%. In terms of sensitivity, these out-performed more complex algorithms identified in other studies, as well as the expert panel. The best-performing algorithm is predicted to identify about 9/10 treatment-seeking HAT cases, though only 1/10 patients referred would test positive. CONCLUSIONS/SIGNIFICANCE: In the absence of regular active screening, improving referrals of HAT patients through other means is essential. Systematic use of syndromic algorithms by peripheral HCWs has the potential to increase case detection and would increase their participation in HAT programmes. The algorithms proposed here, though promising, should be validated elsewhere.
Resumo:
Water delivered by dental units during routine dental practice is densely contaminated by bacteria. The aim of this study was to determine actual isolation of the microorganisms sprayed from Dental Unit Water Lines (DUWLs) when enrichment cultures are performed and to compare frequencies with those obtained without enrichment cultures. Moreover, the antimicrobial susceptibilities of the microorganisms isolated were also studied. Water samples were collected from one hundred dental equipments in use at Dental Hospital of our University in order to evaluate the presence/absence of microorganisms and to perform their presumptive identification. Aliquots from all of the samples were inoculated in eight different media including both enrichment and selective media. Minimal inhibitory concentrations (MIC) were determined by the broth dilution method. The results herein reported demonstrate that most of the DUWLs were colonized by bacteria from human oral cavity; when enrichment procedures were applied the percentage of DUWLs with detectable human bacteria was one hundred percent. The results showed that in order to evaluate the actual risk of infections spread by DUWLs the inclusion of a step of pre-enrichment should be performed. The need for devices preventing bacterial contamination of DUWLs is a goal to be achieved in the near future that would contribute to maintain safety in dental medical assistance
Resumo:
Human embryonic stem cells are pluripotent cells capable of renewing themselves and differentiating to specialized cell types. Because of their unique regenerative potential, pluripotent cells offer new opportunities for disease modeling, development of regenerative therapies, and treating diseases. Before pluripotent cells can be used in any therapeutic applications, there are numerous challenges to overcome. For instance, the key regulators of pluripotency need to be clarified. In addition, long term culture of pluripotent cells is associated with the accumulation of karyotypic abnormalities, which is a concern regarding the safe use of the cells for therapeutic purposes. The goal of the work presented in this thesis was to identify new factors involved in the maintenance of pluripotency, and to further characterize molecular mechanisms of selected candidate genes. Furthermore, we aimed to set up a new method for analyzing genomic integrity of pluripotent cells. The experimental design applied in this study involved a wide range of molecular biology, genome-wide, and computational techniques to study the pluripotency of stem cells and the functions of the target genes. In collaboration with instrument and reagent company Perkin Elmer, KaryoliteTM BoBsTM was implemented for detecting karyotypic changes of pluripotent cells. Novel genes were identified that are highly and specifically expressed in hES cells. Of these genes, L1TD1 and POLR3G were chosen for further investigation. The results revealed that both of these factors are vital for the maintenance of pluripotency and self-renewal of the hESCs. KaryoliteTM BoBsTM was validated as a novel method to detect karyotypic abnormalities in pluripotent stem cells. The results presented in this thesis offer significant new information on the regulatory networks associated with pluripotency. The results will facilitate in understanding developmental and cancer biology, as well as creating stem cell based applications. KaryoliteTM BoBsTM provides rapid, high-throughput, and cost-efficient tool for screening of human pluripotent cell cultures.