121 resultados para Hpf rectifiers
Resumo:
The granule cells of the dentate gyrus give rise to thin unmyelinated axons, the mossy fibers. They form giant presynaptic boutons impinging on large complex spines on the proximal dendritic portions of hilar mossy cells and CA3 pyramidal neurons. While these anatomical characteristics have been known for some time, it remained unclear whether functional changes at mossy fiber synapses such as long-term potentiation (LTP) are associated with structural changes. Since subtle structural changes may escape a fine-structural analysis when the tissue is fixed by using aldehydes and is dehydrated in ethanol, rapid high-pressure freezing (HPF) of the tissue was applied. Slice cultures of hippocampus were prepared and incubated in vitro for 2 weeks. Then, chemical LTP (cLTP) was induced by the application of 25 mM tetraethylammonium (TEA) for 10 min. Whole-cell patch-clamp recordings from CA3 pyramidal neurons revealed a highly significant potentiation of mossy fiber synapses when compared to control conditions before the application of TEA. Next, the slice cultures were subjected to HPF, cryosubstitution, and embedding in Epon for a fine-structural analysis. When compared to control tissue, we noticed a significant decrease of synaptic vesicles in mossy fiber boutons and a concomitant increase in the length of the presynaptic membrane. On the postsynaptic side, we observed the formation of small, finger-like protrusions, emanating from the large complex spines. These short protrusions gave rise to active zones that were shorter than those normally found on the thorny excrescences. However, the total number of active zones was significantly increased. Of note, none of these cLTP-induced structural changes was observed in slice cultures from Munc13-1 deficient mouse mutants showing severely impaired vesicle priming and docking. In conclusion, application of HPF allowed us to monitor cLTP-induced structural reorganization of mossy fiber synapses.
Resumo:
Despite recent progress in fluorescence microscopy techniques, electron microscopy (EM) is still superior in the simultaneous analysis of all tissue components at high resolution. However, it is unclear to what extent conventional fixation for EM using aldehydes results in tissue alteration. Here we made an attempt to minimize tissue alteration by using rapid high-pressure freezing (HPF) of hippocampal slice cultures. We used this approach to monitor fine-structural changes at hippocampal mossy fiber synapses associated with chemically induced long-term potentiation (LTP). Synaptic plasticity in LTP has been known to involve structural changes at synapses including reorganization of the actin cytoskeleton and de novo formation of spines. While LTP-induced formation and growth of postsynaptic spines have been reported, little is known about associated structural changes in presynaptic boutons. Mossy fiber synapses are assumed to exhibit presynaptic LTP expression and are easily identified by EM. In slice cultures from wildtype mice, we found that chemical LTP increased the length of the presynaptic membrane of mossy fiber boutons, associated with a de novo formation of small spines and an increase in the number of active zones. Of note, these changes were not observed in slice cultures from Munc13-1 knockout mutants exhibiting defective vesicle priming. These findings show that activation of hippocampal mossy fibers induces pre- and postsynaptic structural changes at mossy fiber synapses that can be monitored by EM.
Resumo:
Objective: In 2011, the term “intratumoral budding, ITB” was used to describe the presence of tumor buds within the main tumor body and was correlated to worse clinical outcome in colorectal cancer patients. Here, we further elucidate the potential clinical role of ITB in pre-operative biopsies using pan-cytokeratin stained tissues and a quantitative scoring system. Method: 139 pre-operative biopsies from patients with colorectal cancer underwent immunohistochemistry for pancytokeratin (AE1/AE3). ITB were counted in the area of densest budding (40×) and classified as high-grade when >10 buds/HPF were observed based on receiver operating characteristic (ROC) curve analysis. Results: High-grade ITB occurred in 26.6 % of cases and was associated with right-sided tumor location (p=0.0356), more advanced pT (p=0.0198) and pN (p<0.0001) classifications, distant metastasis (p=0.0164), higher tumor grade (p=0.0037) and lymphatic invasion (p=0.0445). The specificity and positive predictive value for lymph node metastasis was 86.7 % and 75.6 %, respectively. Disease-free survival was significantly worse in patients with high-grade ITB (5-year survival=25 %) in comparison to patients with low-grade ITB (5-year survival=55 %) (p=0.0157). Conclusion: The assessment of ITB in pre-operative biopsies is predictive of local and distant metastasis in corresponding resections and should be considered in daily management of colorectal cancer patients.
Resumo:
BACKGROUND: Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy. METHODOLOGY/PRINCIPAL FINDINGS: EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2+/-2.9% and 83.7+/-3.0% vs. 53.5+/-2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62+/-0.03 and 1.68+/-0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6+/-0.3 and 8.1+/-0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7+/-44.1 vs. 340.0+/-29.1 CD34(+)/CD45(-) cells/1x10(5) mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9+/-0.7 vs. 2.6+/-0.4 CD34(+) cells/HPF, P<0.001) 3 days after the last injection. CONCLUSIONS/SIGNIFICANCE: Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.
Resumo:
Endothelial progenitor cells (EPC) are involved in many healing processes in cardiovascular diseases and can be found in spontaneously resolving venous thrombi. The purpose of the present study was to investigate whether the therapeutic administration of EPC might enhance the resolution of venous thrombi. For this purpose, venous thrombosis was induced in the infrarenal inferior vena cava (IVC) in 28 athymic nude rats. Culture expanded EPC derived from human peripheral blood mononuclear cells were injected intravenously two and four days after thrombus induction. Recanalisation of the IVC and thrombus organisation were assessed by laser Doppler measurements of the blood flow and immunohistochemical detection of endothelialised luminal structures in the thrombus. EPC transplantation resulted in significantly enhanced thrombus neovascularisation (capillary density: 186.6 +/- 26.7/HPF vs. 78 +/- 12.3/HPF, p<0.01; area covered by capillaries: 8.9 +/- 1.7 microm(2) vs. 2.5 +/- 1.3 microm(2), p<0.01) and was accompanied by a substantial increase in intra-thrombus blood flow (perfusion ratio: 0.7 +/- 0.07 vs. 0.3 +/- 0.08, p<0.02). These results were paralleled by augmented macrophage recruitment into resolving thrombi in the animals treated with EPC (39.4 +/- 4.7/HPF vs. 11.6 +/- 1.9/HPF, p<0.01). Our data suggest that EPC transplantation might be of clinical value to facilitate venous thrombus resolution in cases where current therapeutic options have limited success.
Resumo:
BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic, Th2-type inflammatory disease. Chemoattractant receptor-homologous molecule on Th2 cells (CRTH2) is a prostaglandin D(2) (PGD(2)) receptor, expressed by Th2 cells and other inflammatory cells, including eosinophils and basophils, that mediates chemotaxis and activation. OC000459 is a selective CRTH2 antagonist and would be expected to suppress eosinophilic tissue inflammation. The purpose of this study was to evaluate the efficacy and safety of an OC000459 monotherapy in adult patients with active, corticosteroid-dependent or corticosteroid-refractory EoE. METHODS: In this randomized, double-blind, placebo-controlled trial, 26 adult patients (m/f = 22/4; mean age 41 years, range 22-69 years) with active EoE, dependent or resistant to corticosteroids, were treated either with 100 mg OC000459 (n = 14) or placebo (n = 12) twice daily. Pre- and post-treatment disease activity was assessed clinically, endoscopically, histologically, and via biomarkers. The primary end point was the reduction in esophageal eosinophil infiltration. RESULTS: After an 8-week OC000459 treatment, the esophageal eosinophil load decreased significantly, from 114.83 to 73.26 eosinophils per high-power field [(eos/hpf), P = 0.0256], whereas no reduction was observed with placebo (102.80-99.47 eos/hpf, P = 0.870). With OC000459, the physician's global assessment of disease activity improved from 7.13 to 5.18 (P = 0.035). OC000459 likewise reduced extracellular deposits of eosinophil peroxidase and tenascin C, the effects not seen with placebo. No serious adverse events were observed. CONCLUSIONS: An 8-week treatment with the CRTH2-antagonist, OC000459, exerts modest, but significant, anti-eosinophil and beneficial clinical effects in adult patients with active, corticosteroid-dependent or corticosteroid-refractory EoE and is well tolerated.
Resumo:
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) is now in orbit for more than four years. This is longer than the originally planned lifetime of the satellite and after three years on the same altitude the satellite has been lowered to 235 km in several steps. In the frame of the GOCE High-level Processing Facility the Astronomical Institute of the University of Bern (AIUB) is responsible for the determination of the official Precise Science Orbit (PSO) product. Kinematic GOCE orbits are part of this product and are used by several institutions in- and outside the HPF for determining the low degrees of the Earth’s gravity field. AIUB GOCE GPS-only gravity field solutions using the Celestial Mechanics Approach and covering the Release 4 period as well as a more recent time interval at the lower orbit altitude are shown and discussed. Special attention is paid to the impact of systematic deficiencies in the kinematic orbits on the resulting gravity fields, e.g., related to the geomagnetic equator, and on possibilities to get rid of them.
Resumo:
Background:In colorectal cancer (CRC), tumour budding at the invasion front is associated with lymph node (LN) and distant metastasis. Interestingly, tumour budding can also be detected in biopsies (intratumoural budding; ITB) and may have similar clinical importance. Here we investigate whether ITB in preoperative CRC biopsies can be translated into daily diagnostic practice.Methods:Preoperative biopsies from 133 CRC patients (no neoadjuvant therapy) underwent immunohistochemistry for pan-cytokeratin marker AE1/AE3. Across all biopsies for each patient, the densest region of buds at × 40 (high-power field; HPF) was identified and buds were counted.Results:A greater number of tumour buds in the biopsy was associated with pT stage (P=0.0143), LN metastasis (P=0.0007), lymphatic (P=0.0065) and venous vessel invasion (P=0.0318) and distant metastasis (cM1) (P=0.0013). Using logistic regression, a 'scale' was developed to estimate the probability of LN and distant metastasis using the number of tumour buds (e.g. 10 buds per HPF: 64% chance of LN metastasis; 30 buds per HPF: 86% chance). Inter-observer agreement for ITB was excellent (intraclass correlation coefficient: 0.813).Conclusion:Tumour budding can be assessed in the preoperative biopsy of CRC patients. It is practical, reproducible and predictive of LN and distant metastasis. Intratumoural budding qualifies for further investigation in the prospective setting.
Resumo:
Electron microscopy (EM) allows for the simultaneous visualization of all tissue components at high resolution. However, the extent to which conventional aldehyde fixation and ethanol dehydration of the tissue alter the fine structure of cells and organelles, thereby preventing detection of subtle structural changes induced by an experiment, has remained an issue. Attempts have been made to rapidly freeze tissue to preserve native ultrastructure. Shock-freezing of living tissue under high pressure (high-pressure freezing, HPF) followed by cryosubstitution of the tissue water avoids aldehyde fixation and dehydration in ethanol; the tissue water is immobilized in ∼50 ms, and a close-to-native fine structure of cells, organelles and molecules is preserved. Here we describe a protocol for HPF that is useful to monitor ultrastructural changes associated with functional changes at synapses in the brain but can be applied to many other tissues as well. The procedure requires a high-pressure freezer and takes a minimum of 7 d but can be paused at several points.
Resumo:
Camillo Golgi's "Reazione Nera" led to the discovery of dendritic spines, small appendages originating from dendritic shafts. With the advent of electron microscopy (EM) they were identified as sites of synaptic contact. Later it was found that changes in synaptic strength were associated with changes in the shape of dendritic spines. While live-cell imaging was advantageous in monitoring the time course of such changes in spine structure, EM is still the best method for the simultaneous visualization of all cellular components, including actual synaptic contacts, at high resolution. Immunogold labeling for EM reveals the precise localization of molecules in relation to synaptic structures. Previous EM studies of spines and synapses were performed in tissue subjected to aldehyde fixation and dehydration in ethanol, which is associated with protein denaturation and tissue shrinkage. It has remained an issue to what extent fine structural details are preserved when subjecting the tissue to these procedures. In the present review, we report recent studies on the fine structure of spines and synapses using high-pressure freezing (HPF), which avoids protein denaturation by aldehydes and results in an excellent preservation of ultrastructural detail. In these studies, HPF was used to monitor subtle fine-structural changes in spine shape associated with chemically induced long-term potentiation (cLTP) at identified hippocampal mossy fiber synapses. Changes in spine shape result from reorganization of the actin cytoskeleton. We report that cLTP was associated with decreased immunogold labeling for phosphorylated cofilin (p-cofilin), an actin-depolymerizing protein. Phosphorylation of cofilin renders it unable to depolymerize F-actin, which stabilizes the actin cytoskeleton. Decreased levels of p-cofilin, in turn, suggest increased actin turnover, possibly underlying the changes in spine shape associated with cLTP. The findings reviewed here establish HPF as an appropriate method for studying the fine structure and molecular composition of synapses on dendritic spines.
Resumo:
Increasing evidence indicates that tumor microenvironment (TME) is crucial in tumor survival and metastases. Inflammatory cells accumulate around tumors and strangely appear to be permissive to their growth. One key stroma cell is the mast cell (MC), which can secrete numerous pro- and antitumor molecules. We investigated the presence and degranulation state of MC in pancreatic ductal adenocarcinoma (PDAC) as compared to acute ancreatitis (AP). Three different detection methods: (a) toluidine blue staining, as well as immunohistochemistry for (b) tryptase and (c) c-kit, were utilized to assess the number and extent of degranulation of MC in PDAC tissue (n=7), uninvolved pancreatic tissue derived from tumor-free margins (n=7) and tissue form AP (n=4). The number of MC detected with all three methods was significantly increased in PDAC, as compared to normal pancreatic tissue derived from tumor-free margins (p<0.05). The highest number of MC was identified by c-kit, 22.2∓7.5 per high power field (HPF) in PDAC vs 9.7∓5.1 per HPF in normal tissue. Contrary to MC in AP, where most of the detected MC were found degranulated, MC in PDAC appeared intact. In conclusion, MC are increased in number, but not degranulated in PDAC, suggesting that they may contribute to cancer growth by permitting selective release of pro-tumorogenic molecules.
Resumo:
BACKGROUND Some patients with a phenotypic appearance of eosinophilic oesophagitis (EoE) respond histologically to PPI, and are described as having PPI-responsive oesophageal eosinophilia (PPI-REE). It is unclear if PPI-REE is a GERD-related phenomenon, a subtype of EoE, or a completely unique entity. AIM To compare demographic, clinical and histological features of EoE and PPI-REE. METHODS Two databases were reviewed from the Walter Reed and Swiss EoE databases. Patients were stratified into two groups, EoE and PPI-REE, based on recent EoE consensus guidelines. Response to PPI was defined as achieving less than 15 eos/hpf and a 50% decrease from baseline following at least a 6-week course of treatment. RESULTS One hundred and three patients were identified (63 EoE and 40 PPI-REE; mean age 40.2 years, 75% male and 89% Caucasian). The two cohorts had similar dysphagia (97% vs. 100%, P = 0.520), food impaction (43% vs. 35%, P = 0.536), and heartburn (33% vs. 32%, P = 1.000) and a similar duration of symptoms (6.0 years vs. 5.8 years, P = 0.850). Endoscopic features were also similar between EoE and PPI-REE; rings (68% vs. 68%, P = 1.000), furrows (70% vs. 70%, P = 1.000), plaques (19% vs. 10%, P = 0.272), strictures (49% vs. 30%, P = 0.066). EoE and PPI-REE were similar in the number of proximal (39 eos/hpf vs. 38 eos/hpf, P = 0.919) and distal eosinophils (50 vs. 43 eos/hpf, P = 0.285). CONCLUSIONS EoE and PPI-responsive oesophageal eosinophilia are similar in clinical, histological and endoscopic features and therefore are indistinguishable without a PPI trial. Further studies are needed to determine why a subset of patients with oesophageal eosinophilia respond to PPI.
Resumo:
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) was the first Earth explorer core mission of the European Space Agency. It was launched on March 17, 2009 into a Sun-synchronous dusk-dawn orbit and re-entered into the Earth’s atmosphere on November 11, 2013. The satellite altitude was between 255 and 225 km for the measurement phases. The European GOCE Gravity consortium is responsible for the Level 1b to Level 2 data processing in the frame of the GOCE High-level processing facility (HPF). The Precise Science Orbit (PSO) is one Level 2 product, which was produced under the responsibility of the Astronomical Institute of the University of Bern within the HPF. This PSO product has been continuously delivered during the entire mission. Regular checks guaranteed a high consistency and quality of the orbits. A correlation between solar activity, GPS data availability and quality of the orbits was found. The accuracy of the kinematic orbit primarily suffers from this. Improvements in modeling the range corrections at the retro-reflector array for the SLR measurements were made and implemented in the independent SLR validation for the GOCE PSO products. The satellite laser ranging (SLR) validation finally states an orbit accuracy of 2.42 cm for the kinematic and 1.84 cm for the reduced-dynamic orbits over the entire mission. The common-mode accelerations from the GOCE gradiometer were not used for the official PSO product, but in addition to the operational HPF work a study was performed to investigate to which extent common-mode accelerations improve the reduced-dynamic orbit determination results. The accelerometer data may be used to derive realistic constraints for the empirical accelerations estimated for the reduced-dynamic orbit determination, which already improves the orbit quality. On top of that the accelerometer data may further improve the orbit quality if realistic constraints and state-of-the-art background models such as gravity field and ocean tide models are used for the reduced-dynamic orbit determination.
Resumo:
The Gravity field and steady-state Ocean Circulation Explorer (GOCE), ESA’s first Earth Explorer core mission, was launched on March 17, 2009 into a sunsynchronous dusk-dawn orbit and eventually re-entered into the Earth’s atmosphere on November 11, 2013. A precise science orbit (PSO) product was provided by the GOCE High-level Processing Facility (HPF) from the GPS high-low Satellite-to-Satellite Tracking (hl-SST) data from the beginning until the very last days of the mission. We recapitulate the PSO procedure and refer to the results achieved until the official end of the GOCE mission on October 21, 2013, where independent validations with Satellite Laser ranging (SLR) measurements confirmed a high quality of the PSO product of about 2 cm 1-D RMS. We then focus on the period after the official end of the mission, where orbits could still be determined thanks to the continuously running GPS receivers delivering high quality data until a few hours before the re-entry into the Earth’s atmosphere. We address the challenges encountered for orbit determination during these last days and report on adaptions in the PSO procedure to also obtain good orbit results at the unprecedented low orbital altitudes below 224 km.
Resumo:
Tumor budding refers to single or small cluster of tumor cells detached from the main tumor mass. In colon cancer high tumor budding is associated with positive lymph nodes and worse prognosis. Therefore, we investigated the value of tumor budding as a predictive feature of lymph node status in breast cancer (BC). Whole tissue sections from 148 surgical resection specimens (SRS) and 99 matched preoperative core biopsies (CB) with invasive BC of no special type were analyzed on one slide stained with pan-cytokeratin. In SRS, the total number of intratumoral (ITB) and peripheral tumor buds (PTB) in ten high-power fields (HPF) were counted. A bud was defined as a single tumor cell or a cluster of up to five tumor cells. High tumor budding equated to scores averaging >4 tumor buds across 10HPFs. In CB high tumor budding was defined as ≥10 buds/HPF. The results were correlated with pathological parameters. In SRS high PTB stratified BC with lymph node metastases (p ≤ 0.03) and lymphatic invasion (p ≤ 0.015). In CB high tumor budding was significantly (p = 0.0063) associated with venous invasion. Pathologists are able, based on morphology, to categorize BC into a high and low risk groups based in part on lymph node status. This risk assessment can be easily performed during routine diagnostics and it is time and cost effective. These results suggest that high PTB is associated with loco-regional metastasis, highlighting the possibility that this tumor feature may help in therapeutic decision-making.