725 resultados para Hoyt, Jesse.
Resumo:
This essay is intended as a self-reflective, auto-critique of the ‘social accounting community’. The essay is directed at the academic community of accountants concerned with social accounting. This `community' is predominantly concerned with English language accounting journals and is preoccupied with the social and environmental practices of the larger private sector organisations. The essay is motivated by a concern over our responsibilities as academics in a world in crisis and a concern that social accounting is losing its energy and revolutionary zeal. This community's social accounting endeavours have taken place in almost complete ignorance of the activities and developments in non accounting communities and, in particular, developments in the public and third sectors. The essay reaches out to the public and third sector work and literature as an illustration of one of the ways in which ‘our’ social accounting can try to prevent itself from becoming moribund.
Resumo:
The efficiency of fuel cells and metal-air batteries is significantly limited by the activation of oxygen reduction and evolution reactions. Despite the well-recognized role of oxygen reaction kinetics on the viability of energy technologies, the governing mechanisms remain elusive and until now have been addressable only by macroscopic studies. This lack of nanoscale understanding precludes optimization of material architecture. Here, we report direct measurements of oxygen reduction/evolution reactions and oxygen vacancy diffusion on oxygen-ion conductive solid surfaces with sub-10 nm resolution. In electrochemical strain microscopy, the biased scanning probe microscopy tip acts as a moving, electrocatalytically active probe exploring local electrochemical activity. The probe concentrates an electric field in a nanometre-scale volume of material, and bias-induced, picometre-level surface displacements provide information on local electrochemical processes. Systematic mapping of oxygen activity on bare and platinum-functionalized yttria-stabilized zirconia surfaces is demonstrated. This approach allows direct visualization of the oxygen reduction/evolution reaction activation process at the triple-phase boundary, and can be extended to a broad spectrum of oxygen-conductive and electrocatalytic materials.
Resumo:
The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.
Resumo:
Spatially resolved polarization switching In ferroelectric nanocapacitors was studied on the sub-25 nm scale using the first-order reversal curve (FORC) method. The chosen capacitor geometry allows both high-veracity observation of the domain structure and mapping of polarization switching in a uniform field, synergistically combining microstructural observations and probing of uniform-field polarization responses as relevant to device operation. A classical Kolmogorov-Avrami-Ishibashi model has been adapted to the voltage domain, and the individual switching dynamics of the FORC response curves are well approximated by the adapted model. The comparison with microstructures suggests a strong spatial variability of the switching dynamics inside the nanocapacitors.
Resumo:
Nanoscale electromechanical activity, remanent polarization states, and hysteresis loops in paraelectric TiO2 and SrTiO3 thin films are observed using scanning probe microscopy. The coupling between the ionic dynamics and incipient ferroelectricity in these materials is analyzed using extended Landau-Ginzburg-Devonshire (LGD) theory. The possible origins of electromechanical coupling including ionic dynamics, surface-charge induced electrostriction, and ionically induced ferroelectricity are identified. For the latter, the ionic contribution can change the sign of first order LGD expansion coefficient, rendering material effectively ferroelectric. The lifetime of these ionically induced ferroelectric states is then controlled by the transport time of the mobile ionic species and well above that of polarization switching. These studies provide possible explanation for ferroelectric-like behavior in centrosymmetric transition metal oxides.