995 resultados para Hot deformation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work explores the impact of α precipitates on β recrystallization following hot deformation of Ti-5Al-5Mo-5V-3Cr with grains larger than 1 mm. A single hot rolling pass of 36 pct reduction was conducted on an aged microstructure containing α precipitates at a temperature well below the β transus temperature. After annealing, a uniformly recrystallized structure with a grain size of ~100 µm is formed. The prior β grain boundaries can be readily identified and it is seen that the primary β grains have been replaced by grains displaying a spread of correlated misorientation angles extending up to the highest allowable values. The annealing comprises two stages. The first stage involves normal β subgrain growth limited by the Zener pinning force of the unstable α precipitates. The second stage corresponds to the onset of β recrystallization at the point where the Zener pinning force drops due to dissolution of the α precipitates. This leads to a uniform distribution of site saturated recrystallization nuclei.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The cause of upper-crustal segmentation into rhomb-shaped, shear zone-bound domains associated with contractional sedimentary basins in hot, wide orogens is not well understood. Here we use scaled multilayered analogue experiments to investigate the role of an orogen-parallel crustal-strength gradient on the formation of such structures. We show that the aspect ratio and size of domains, the sinuous character and abundance of transpressional shear zones vary with the integrated mechanical strength of crust. Upper-crustal deformation patterns and the degree of strain localization in the experiments are controlled by the ratio between the brittle and ductile strength in the model crust as well as gradients in tectonic and buoyancy forces. The experimental results match the first-order kinematic and structural characteristics of the southern Central Andes and provide insight on the dynamics of underlying deformation patterns in hot, wide orogens.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study a two dimensional model is first developed to show the behaviour of dense non-aqueous phase liquids (DNAPL) within a rough fracture. To consider the rough fracture, the fracture is imposed with variable apertures along its plane. It is found that DNAPL follows preferential pathways. In next part of the study the above model is further extended for non-isothermal DNAPL flow and DNAPL-water interphase mass transfer phenomenon. These two models are then coupled with joint deformation due to normal stresses. The primary focus of these models is specifically to elucidate the influence of joint alteration due to external stress and fluid pressures on flow driven energy transport and interphase mass transfer. For this, it is assumed that the critical value for joint alteration is associated with external stress and average of water and DNAPL pressures in multiphase system and the temporal and spatial evolution of joint alteration are determined for its further influence on energy transport and miscible phase transfer. The developed model has been studied to show the influence of deformation on DNAPL flow. Further this preliminary study demonstrates the influence of joint deformation on heat transport and phase miscibility via multiphase flow velocities. It is seen that the temperature profile changes and shows higher diffusivity due to deformation and although the interphase miscibility value decreases but the lateral dispersion increases to a considerably higher extent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A plain carbon steel was deformed using a hot torsion deformation simulator. A schedule known to produce strain-induced ferrite was used with the strain interrupted for increasing intervals of time to determine the effect of an isothermal hold on the final microstructure. Microscopy and electron back-scattered diffraction (EBSD) were used to analyse the changes that occurred in the partially transformed microstructure during the hold and the subsequent applied strain. The strain-induced ferrite coarsened during the hold and this coarsened ferrite was refined during the second deformation. These results were compared to those obtained for a different plain carbon steel deformed in single pass rolling close to the Ar3 temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The crystallographic rotation field for deformation in torsion is such that it is possible for orientations close to stable orientations to rotate away from the stable orientation. A Taylor type model was used to demonstrate that this phenomenon has the potential to transform randomly generated low-angle boundaries into high-angle boundaries. After imposing an equivalent strain of 1.2, up to 40% of the simulated boundaries displayed a disorientation in excess of 15°. These high-angle boundaries were characterised by a disorientation axis close to parallel with the sample radial direction. A series of hot torsion tests was carried out on 1050 aluminium to seek evidence for boundaries formed by this mechanism. A number of deformation-induced high-angle boundaries were identified. Many of these boundaries showed disorientation axes and rotation senses similar to those seen in the simulations. Between 10% and 25% of all the high-angle boundary present in samples twisted to equivalent strains between 2 and 7 could be attributed to the present mechanism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work was aimed at a detailed investigation of the orientation dependence of the microstructure characteristics in a Fe-30Ni-Nb austenitic model steel subjected to hot uniaxial compression at 1198 K (925 °C) at a strain rate of 1 s−1 to several strain levels up to 1.0. The quantification of the substructure evolution as a function of strain was performed for the stable 〈011〉 oriented grains. Other grain orientations were also investigated in detail at a strain of 0.2. The 〈110〉 oriented grains contained self-screening arrays of “microbands” (MBs) aligned with high Schmid factor {111} slip planes. The MB crystallographic alignment was largely maintained up to a strain of 1.0, which suggests that the corresponding boundaries kept continuously rearranging themselves during straining and did not follow the sample shape change. The mean MB spacing decreased and misorientation angle increased with strain towards saturation, indicating the operation of the “repolygonization” dynamic recovery mechanism. The non-〈011〉 oriented grains displayed a strong tendency to split during deformation into deformation bands having alternating orientations and being mutually rotated by large angles. The bands were separated by transition regions comprising arrays of closely spaced, extended sub-boundaries collectively accommodating large misorientations across very small distances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition of cubic indium hydroxide to cubic indium oxide has been studied by thermogravimetric analysis complimented with hot stage Raman spectroscopy. Thermal analysis shows the transition of In(OH)3 to In2O3 occurs at 219°C. The structure and morphology of In(OH)3 synthesised using a soft chemical route at low temperatures was confirmed by X-ray diffraction and scanning electron microscopy. A topotactical relationship exists between the micro/nano-cubes of In(OH)3 and In2O3. The Raman spectrum of In(OH)3 is characterised by an intense sharp band at 309 cm-1 attributed to ν1 In-O symmetric stretching mode, bands at 1137 and 1155 cm-1 attributed to In-OH δ deformation modes, bands at 3083, 3215, 3123 and 3262 cm-1 assigned to the OH stretching vibrations. Upon thermal treatment of In(OH)3 new Raman bands are observed at 125, 295, 488 and 615 cm-1 attributed to In2O3. Changes in the structure of In(OH)3 with thermal treatment is readily followed by hot stage Raman spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition of disc-like chromium hydroxide nanomaterials to chromium oxide nanomaterials has been studied by hot stage Raman spectroscopy. The structure and morphology of α-CrO(OH) synthesised using hydrothermal treatment was confirmed by X-ray diffraction and transmission electron microscopy. The Raman spectrum of α-CrO(OH) is characterised by two intense bands at 823 and 630 cm-1 attributed to ν1 CrIII-O symmetric stretching mode, bands at 1179 cm-1 attributed to CrIII-OH δ deformation modes. No bands are observed above 3000 cm-1. The absence of characteristic OH vibrational bands may be due to short hydrogen bonds in the α-CrO(OH) structure. Upon thermal treatment of α-CrO(OH), new Raman bands are observed at 599, 542, 513, 396, 344 and 304 cm-1, which are attributed to Cr2O3. This hot-stage Raman study shows that the transition of α-CrO(OH) to Cr2O3 occurs before 350 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under hot-forming conditions characterized by high homologous temperatures and strain-rates, metals usually exhibit rate-dependent inelastic behavior. An elastic-viscoplastic constitutive model is presented here to describe metal behavior during hot-forming. The model uses an isotropic internal variable to represent the resistance offered to plastic deformation by the microstructure. Evolution equations are developed for the inelastic strain and the deformation resistance based on experimental results. A methodology is presented for extracting model parameters from constant true strain-rate compression tests performed at different temperatures. Model parameters are determined for an Al-1Mn alloy and an Al-Mg-Si alloy, and the predictions of the model are shown to be in good agreement with the experimental data. (C) 2000 Kluwer Academic Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alloy, Ti-6Al-4V is an alpha + beta Ti alloy that has large prior beta grain size (similar to 2 mm) in the as cast state. Minor addition of B (about 0.1 wt.%) to it refines the grain size significantly as well as produces in-situ TiB needles. The role played by these microstructural modifications on high temperature deformation processing maps of B-modified Ti64 alloys is examined in this paper.Power dissipation efficiency and instability maps have been generated within the temperature range of 750-1000 degrees C and strain rate range of 10(-3)-10(+1) s(-1). Various deformation mechanisms, which operate in different temperature-strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results indicate four distinct deformation domains within the range of experimental conditions examined, with the combination of 900-1000 degrees C and 10(-3)-10(-2) s(-1) being the optimum for hot working. In that zone, dynamic globularization of alpha laths is the principle deformation mechanism. The marked reduction in the prior beta grain size, achieved with the addition of B, does not appear to alter this domain markedly. The other domains, with negative values of instability parameter, show undesirable microstructural features such as extensive kinking/bending of alpha laths and breaking of beta laths for Ti64-0.0B as well as generation of voids and cracks in the matrix and TiB needles in the B-modified alloys. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A computer code is developed as a part of an ongoing project on computer aided process modelling of forging operation, to simulate heat transfer in a die-billet system. The code developed on a stage-by-stage technique is based on an Alternating Direction Implicit scheme. The experimentally validated code is used to study the effect of process specifics such as preheat die temperature, machine ascent time, rate of deformation, and dwell time on the thermal characteristics in a batch coining operation where deformation is restricted to surface level only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Addition of boron in small quantities to various titanium alloys have shown significant improvement in mechanical behavior of materials. In the present study, electron back-scatter diffraction (EBSD) techniques have been applied to investigate the deformation microstructure evolution in boron modified two-phase titanium alloy Ti-6Al-4V. The alloy was hot compressed at 750 degrees C up to 50% height reduction at two different strain rates (10(-3) s(-1) and 1 s(-1)). The EBSD analyses indicated significant differences in deformed microstructure of the base alloy and the alloy containing boron. A strong subgrain formation tendency was observed along with inhomogeneous distribution of dislocations inside large a colonies of Ti64. In contrast, a colonies were relatively strain free for Ti64 + B, with more uniform dislocation density distribution. The observed difference is attributed to microstructural modifications viz, grain size refinement and presence of TiB particles at grain boundary produced due to boron addition. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The constitutive behaviour of agr-beta nickel silver in the temperature range 600�850 °C and strainrate range 0.001�100s�1 was characterized with the help of a processing map generated on the principles of the dynamic materials model. On the basis of the flow-stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)], wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-beta nickel silver exhibits a single domain at temperatures greater than 700 °C and at strain rates lower than 1 s�1 with a maximum efficiency of power dissipation of about 42% occurring at about 850 °C and at 0.1 s�1. In the domain, the agr phase undergoes dynamic recrystallization and controls the deformation of the alloy, while the beta phase deforms superplastically. Optimum conditions for the processing of agr-beta nickel silver are 850 °C and 0.1 s�1. The material undergoes unstable flow at strain rates of 10 and 100 s�1 and in the temperature range 600�750 °C, manifestated in the form of adiabatic shear bands.