959 resultados para Hormone - dosages


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of chronic infusion of gonadotropic hormone agonist Buserelin or antagonist CDB 2085 A for 15 weeks via alzet minipumps in adult male bonnet monkeys was studied. Infusion of Buserelin resulted in a decrease in the difference between serum testosterone values at 22.00 hours and 10.00 hours, decrease in responsiveness to injected Buserelin as judged by change in serum testosterone values from pre-injection values and decrease in sperm counts. Infusion of antagonist resulted in a decrease in the difference between serum testosterone values at 22.00 hours and 10.00 hours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to examine the effect of hemiorchidectomy (HO) on serum FSH, LH, testosterone (T), and inhibin (INH) concentrations as well as on the testicular volume (TV) and on changes in the kinetics of germ cell turnovers in the remaining testis of adult male bonnet monkeys. Blood samples collected at 2200 h at various times before and after HO and testicular biopsies obtained at different periods were subjected to hormone analysis and DNA flow cytometry. Though serum T levels were lowered (p < 0.05) at 12 h after HO, T levels rapidly returned to intact control concentrations by Day 5. While serum LH remained unaltered, serum FSH increased markedly within 2 days of HO and remained significantly (p < 0.05) elevated over the next 90 days. Though serum INH showed a significant decrease (p < 0.05) by 15 min of HO, it returned to approximately 80% of intact levels within one week. The TV of the remaining testis showed maximal increment by Day 30 (p < 0.05) of HO. DNA flow cytometric analysis 24 days after HO showed increases (p < 0.05) in spermatogonia (2C) and primary spermatocytes (4C). These cell types by Day 45 had transformed to round (1C) and elongate (HC) (by 38%, p < 0.001) spermatids. Overall spermatogenesis (conversion of 2C to 1C and HC) showed significant enhancement at Days 110 and 175, suggesting that the spurt in spermatogenic activity is not confined to a single spermatogenic cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although a distinct need for FSH in the regulation of follicular maturation in the primate is well recognized, it is not clear how FSH controls the functionality of different cellular compartments of the follicle. It is also not evident whether there is a requirement for LH in follicular maturation in the primate. In the first part of the present study, female bonnet monkeys were administered a well-characterized ovine (o) LH antiserum to neutralize endogenous monkey LH for different periods during the follicular phase, and the effect on the overall follicular maturation process was assessed by analyzing serum estrogen (E) and progesterone (P) profiles. Neither continuous LH deprivation from Day 8 of the cycle nor deprivation of LH on any one day between Days 6 and 10 had a significant effect on serum E and P profiles and the follicular maturation process. The period for which the antiserum was effective was dependent upon the dose injected; 1 ml of the antiserum given on Day 8 blocked ovulation but not follicular maturation. To assess the effect of deprivation of LH/FSH at the cellular level, animals were deprived in vivo of LH (on Days 8 and 9 of the cycle) or of FSH (on Day 6 of the cycle) by injection of highly characterized hCG and ovine (o) FSH antisera, respectively; the in vitro responsiveness of granulosa and thecal cells isolated on Day 10 from these animals was then determined.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chorionic gonadotrophin (CG) is the first clear embryonic signal during early pregnancy in primates. CG has close structural and functional similarities to pituitary luteinizing hormone (LH) which is regulated by gonadotrophin releasing hormone (GnRH). To study the regulatory mechanism of CG secretion in primate embryos, we examined the production and timing of secretion of GnRH in peri-implantation embryos of the rhesus monkey. In-vivo fertilized/developed morulae and early blastocysts, recovered from non-superovulated, naturally-bred rhesus monkeys by non-surgical uterine flushing, were cultured in vitro to hatched, attached and post-attached blastocyst stages using a well-established culture system. We measured GnRH and CG in media samples from cultured embryos with a sensitive radioimmunoassay and bioassay, respectively. The secretion of GnRH (pg/ml; mean +/- SEM) by embryos (n = 20) commenced from low levels (0.32 +/- 0.05) during the pre-hatching blastocyst stage to 0.70 +/- 0.08 at 6-12 days and 1.30 +/- 0.23 at greater than or equal to 13 days of hatched blastocyst attachment and proliferation of trophoblast cells. GnRH concentrations in culture media obtained from embryos (n = 5) that failed to hatch and attach were mostly undetectable (less than or equal to 0.1). Samples that did not contain detectable GnRH failed to show detectable CG. Immunocytochemical studies, using a specific monoclonal anti-GnRH antibody (HU4H) as well as polyclonal antisera (LR-1), revealed that immunopositive GnRH cells were localized in pre-hatching blastocysts (n = 4), in blastocysts (n = 2) after 5-10 days of attachment and in monolayer cultures (n = 4) of well-established embryonic trophoblast cells. GnRH positive staining was seen only in cytotrophoblasts but not in syncytiotrophoblasts. Similarly, cytotrophoblast, but not syncytiotrophoblast, cells of the rhesus placenta were immunopositive. In controls, either in the absence of antibody or in the presence of antibody pre-absorbed with GnRH, these cells failed to show stain. These observations indicate, for the first time, that an immunoreactive GnRH is produced and secreted by blastocysts during the peri-attachment period and by embryo-derived cytotrophoblast cells in the rhesus monkey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hemiorchidectomy (HO) in the adult male bonnet monkey results in a selective increase in circulating concentrations of FSH and testosterone, and this is accompanied by compensatory increase in sperm production by the remaining testis. We investigated the possible role of increased FSH concentration that occurs after HO in the compensatory increase in the activity of the remaining testis. Of eight adult male bonnet monkeys that underwent HO, four received i.v. injections every other day for 30 days of a well-characterized ovine FSH antiserum (a/s) that cross-reacts with monkey FSH. The remaining four males received normal monkey serum (NMS) as control treatment in a protocol similar to that employed for ais-treated males. Blood samples were collected between 2100 and 2200 h before and 1/2, 1, 3, 5, 7, 14, 22, and 29 days after HO. Testicular weight, number of 3 beta-hydroxy steroid dehydrogenase-positive (3 beta-HSD+) cells, and DNA flow cytometric analysis of germ cell populations were obtained for testes collected before and at the termination of NMS or ais treatment. In NMS-treated males, circulating serum FSH concentrations progressively increased to reach a maximal level by Day 7 after HO (1.95 +/- 0.3 vs. 5.6 +/- 0.7 ng/ml on Days -1 and 7, respectively). Within 30 min of ais injection, FSH antibodies were detected in circulation, and the antibody level was maintained at a constant level between Day 7 and end of treatment (exhibiting 50-60% binding to I-125-hFSH). Although circulating mean nocturnal serum testosterone concentration showed an initial decrease, it rose gradually to pre-HO concentrations by Day 7 in NMS-treated males. In contrast, nocturnal mat serum testosterone concentrations in a/s-treated males remained lower than in NMS-treated controls (p < 0.05) up to Day 22 and thereafter only marginally increased. Testicular weights increased (p < 0.05) over the pre-HO weight in NMS- but not in ais-treated males. After HO, the number of 3 beta-HSD+ cells (Leydig cells) was markedly increased but was significantly (p < 0.05) higher in NMS-treated males compared to a/s-treated males. A significant (p < 0.05) reduction in the primary spermatocyte population of germ cells was observed in ais-treated compared to NMS-treated males. These results suggest that the increased FSH occurring after HO could be intimately involved in increasing the compensatory functional activity of the remaining testis in the male bonnet monkey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective withdrawal of pituitary gonadotropins through specific antibodies is known to cause disruption of spermatogenesis. The cellular mechanism responsible for the degenerative changes under isolated effect of luteinizing hormone (LH) deprivation is not clear. Using antibodies specific to LH we have investigated the effect of immunoneutralization of LH on apoptotic cell death in the testicular cells of the immature and the adult rats. Specific neutralization of LH resulted in apoptotic cell death of germ cells, both in the immature and the adult rats. The germ cells from control animals showed predominantly high molecular weight DNA, while the antiserum treated group showed DNA cleavage into low molecular weight DNA ladder characteristic of apoptosis. This pattern could be observed within 24 h of a/s administration and the effect could be reversed by testosterone. The germ cells were purified by centrifugal elutriation and the vulnerability of germ cell types to undergo apoptosis under LH deprivation was investigated. The round spermatids and the pachytene spermatocytes were found to be the most sensitive germ cells to lack of LH and underwent apoptosis. Interestingly, spermatogonial cells were found to be the least sensitive germ cells to the lack of LH in terms of apoptotic cell death. Results show that LH, in addition to being involved in the germ cell differentiation, is also involved in cell survival and prevent degeneration of germ cells during spermatogenesis. Apoptotic DNA fragmentation may serve as a useful marker for the study of hormonal regulation of spermatogenesis and the specific neutralization of gonadotropic hormones can be a reliable model for the study of the molecular mechanism of apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of 140 days duration was performed to examine if human male volunteers (n = 5) respond to ovine follicle stimulating hormone (oFSH) immunization (administered adsorbed on Alugel on days 1, 20, 40 and 70) by producing antibodies capable of both binding and neutralizing bioactivity of human FSH. The kinetics of antibody production for both the immunogen (oFSH) and the cross-reactive antigen (hFSH) were essentially similar, The volunteers responded only to the first two immunizations, The boosters given on days 40 and 70 were ineffective, probably because of the presence of substantial amounts of circulating antibody to oFSH. Of the antibodies generated to oFSH, 25-45% bound hFSH with a mean binding affinity of 0.65 x 10(9) +/- 0.53 M(-1). The binding capacities at the time of high (30-80 days of immunization) and low (>110 days) titres were 346 +/- 185 and 10.5 +/- 5.8 ng hFSH/ml respectively, During the period of high titre, free serum FSH (value in normal males 1-5 ng/ml) was not monitorable, A 50 mu l aliquot of the antiserum obtained from different volunteers between days 30 and 80 and on day 140 blocked binding of I-125-labelled hFSH to its receptor by 82 +/- 9.7 and 53 +/- 12.2% respectively, The antibody produced was specific for FSH, and no significant change in the values of related glycoprotein hormones (luteinizing hormone/testosterone and thyroid stimulating hormone/thyroxine) were recorded, Seminal plasma transferrin, a marker of Sertoli cell as well as of seminiferous tubular function, showed marked reduction (30-90%) following immunization with oFSH. Considering that endogenous FSH remained neutralized for approximately one sperm cycle only (65 days), the reduction in sperm counts (30-74%) exhibited by some volunteers is encouraging, Immunization with oFSH did not result in any significant changes in haematology, serum biochemistry or hormonal profiles, There was no production of antibodies capable of interacting with non-specific tissues, It is concluded that it should be possible to obtain a sustained long-term blockade of endogenous FSH action in men by using oFSH as an immunogen, This is a prerequisite for obtaining significant reduction in the quality and quantity of spermatozoa produced, thus leading to infertility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antipeptide and antiidiotypic antibodies to several receptors are known to mimic their respective ligands in transducing signals on binding their receptors. In our attempts to study gonadotropin releasing hormone receptor, antipeptide and antiidiotypic monoclonal antibodies specific to the receptor were established earlier. The antipeptide mAb F1G4 was to a synthetic peptide corresponding to the extracellular domain of human GnRH receptor and the antiidiotypic mAb 4D10C1 was to the idiotype of a GnRH specific mAb. Here we report the physiological effects of the two mAbs on binding the receptor, as investigated using in vitro cultures of(a) human term placental villi and (b) rat pituitaries. The mAb 4D10C1 exerted a dose-dependent release of human chorionic gonadonopin in cultures of human term placental villi as well as luteinising and follicle stimulating hormones in cultures of rat pituitaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of Western blot analysis carried out with an interstitial cell extract from male guinea pig and ovarian extract from immature female rats administered equine chorionic gonadotropin (eCG) provide supportive evidence to our earlier suggestion that an 8-kDa peptide is involved in acquisition of steroidogenic capacity by the rat Leydig cells. It was found that though the signal was observed in other tissues such as liver, kidney and lung which do not produce gonadal hormones, the peptide was modulated only by lutenizing hormone (LH) in the rat Leydig cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L-PGlu-(2-proPyl)-L-His-L-ProNH(2) (NP-647) is a CNS active thyrotropin-releasing hormone (TRH) analog with potential application in various CNS disorders including seizures. In the present study, mechanism of action for protective effect of NP-647 was explored by studying role of NP-647 on epileptiform activity and sodium channels by using patch-clamp methods. Epileptiform activity was induced in subicular pyramidal neurons of hippocampal slice of rat by perfusing 4-aminopyridine (4-AP) containing Mg(+2)-free normal artificial cerebrospinal fluid (nACSF). Increase in mean firing frequency was observed after perfusion of 4-AP and zero Mg(+2) (2.10+/-0.47 Hz) as compared with nACSF (0.12+/-0.08 Hz). A significant decrease in mean firing frequency (0.61+/-0.22 Hz), mean frequency of epileptiform events (0.03+/-0.02 Hz vs. 0.22+/-0.05 Hz of 4-AP+0 Mg), and average number of action potentials in paroxysmal depolarization shift-burst (2.54+/-1.21 Hz vs. 8.16+/-0.88 Hz of 4-AP +0 Mg) was observed. A significant reduction in peak dV/dt (246+/-19 mV ms(-1) vs. 297 18 mV ms-1 of 4-AP+0 Mg) and increase (1.332+/-0.018 ms vs. 1.292+/-0.019 ms of 4-AP+0 Mg) in time required to reach maximum depolarization were observed indicating role of sodium channels. Concentration-dependent depression of sodium current was observed after exposure to dorsal root ganglion neurons to NP-647. NP-647 at different concentrations (1, 3, and 10 mu M) depressed sodium current (15+/-0.5%, 50+/-2.6%, and 75+/-0.7%, respectively). However, NP-647 did not show change in the peak sodium current in CNa18 cells. Results of present study demonstrated potential of NP-647 in the inhibition of epileptiform activity by inhibiting sodium channels indirectly. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employed different experimental model systems to define the role of GATA4, beta-catenin, and steroidogenic factor (SF-1) transcriptional factors in the regulation of monkey luteal inhibin secretion. Reverse transcription polymerase chain reactions and western blotting analyses show high expression of inhibin-alpha, GATA4, and beta-catenin in corpus luteum (CL) of the mid-luteal phase. Gonadotropin-releasing hormone receptor antagonist-induced luteolysis model suggested the significance of luteinizing hormone (LH) in regulating these transcriptional factors. Inducible cyclic AMP early repressor mRNA expression was detected in the CL and no change was observed in different stages of CL. Following amino acid sequence analysis, interaction between SF-1 and beta-catenin in mid-stage CL was verified by reciprocal co-immunoprecipitation experiments coupled to immunoblot analysis. Electrophoretic mobility shift analysis support the role of SF-1 in regulating luteal inhibin-alpha expression. Our results suggest a possible multiple crosstalk of Wnt, cAMP, and SF-1 in the regulation of luteal inhibin secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In higher primates, during non-pregnant cycles, it is indisputable that circulating LH is essential for maintenance of corpus luteum (CL) function. On the other hand, during pregnancy, CL function gets rescued by the LH analogue, chorionic gonadotropin (CG). The molecular mechanisms involved in the control of luteal function during spontaneous luteolysis and rescue processes are not completely understood. Emerging evidence suggests that LH/CGR activation triggers proliferation and transformation of target cells by various signaling molecules as evident from studies demonstrating participation of Src family of tyrosine kinases (SFKs) and MAP kinases in hCG-mediated actions in Leydig cells. Since circulating LH concentration does not vary during luteal regression, it was hypothesized that decreased responsiveness of luteal cells to LH might occur due to changes in LH/CGR expression dynamics, modulation of SFKs or interference with steroid biosynthesis. Methods: Since, maintenance of structure and function of CL is dependent on the presence of functional LH/CGR its expression dynamics as well as mRNA and protein expressions of SFKs were determined throughout the luteal phase. Employing well characterized luteolysis and CL rescue animal models, activities of SFKs, cAMP phosphodiesterase (cAMP-PDE) and expression of SR-B1 (a membrane receptor associated with trafficking of cholesterol ester) were examined. Also, studies were carried out to investigate the mechanisms responsible for decline in progesterone biosynthesis in CL during the latter part of the non-pregnant cycle. Results and discussion: The decreased responsiveness of CL to LH during late luteal phase could not be accounted for by changes in LH/CGR mRNA levels, its transcript variants or protein. Results obtained employing model systems depicting different functional states of CL revealed increased activity of SFKs pSrc (Y-416)] and PDE as well as decreased expression of SR-B1correlating with initiation of spontaneous luteolysis. However, CG, by virtue of its heroic efforts, perhaps by inhibition of SFKs and PDE activation, prevents CL from undergoing regression during pregnancy. Conclusions: The results indicated participation of activated Src and increased activity of cAMP-PDE in the control of luteal function in vivo. That the exogenous hCG treatment caused decreased activation of Src and cAMP-PDE activity with increased circulating progesterone might explain the transient CL rescue that occurs during early pregnancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism by which the hinge regions of glycoprotein hormone receptors couple hormone binding to activation of downstream effecters is not clearly understood. In the present study, agonistic (311.62) and antagonistic (311.87) monoclonal antibodies (MAbs) directed against the TSH receptor extracellular domain were used to elucidate role of the hinge region in receptor activation. MAb 311.62 which identifies the LRR/Cb-2 junction (aa 265-275), increased the affinity of TSHR for the hormone while concomitantly decreasing its efficacy, whereas MAb 311.87 recognizing LRR 7-9 (aa 201-259) acted as a non-competitive inhibitor of Thyroid stimulating hormone (TSH) binding. Binding of MAbs was sensitive to the conformational changes caused by the activating and inactivating mutations and exhibited differential effects on hormone binding and response of these mutants. By studying the effects of these MAbs on truncation and chimeric mutants of thyroid stimulating hormone receptor (TSHR), this study confirms the tethered inverse agonistic role played by the hinge region and maps the interactions between TSHR hinge region and exoloops responsible for maintenance of the receptor in its basal state. Mechanistic studies on the antibody-receptor interactions suggest that MAb 311.87 is an allosteric insurmountable antagonist and inhibits initiation of the hormone induced conformational changes in the hinge region, whereas MAb 311.62 acts as a partial agonist that recognizes a conformational epitope critical for coupling of hormone binding to receptor activation. The hinge region, probably in close proximity with the alpha-subunit in the hormone-receptor complex, acts as a tunable switch between hormone binding and receptor activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exoloops of glycoprotein hormone receptors (GpHRs) transduce the signal generated by the ligand-ectodomain interactions to the transmembrane helices either through direct hormonal contact and/or by modulating the interdomain interactions between the hinge region (HinR) and the transmembrane domain (TMD). The ligand-induced conformational alterations in the HinRs and the interhelical loops of luteinizing hormone receptor/follicle stimulating hormone receptor/thyroid stimulating hormone receptor were mapped using exoloop-specific antibodies generated against a mini-TMD protein designed to mimic the native exoloop conformations that were created by joining the thyroid stimulating hormone receptor exoloops constrained through helical tethers and library-derived linkers. The antibody against the mini-TMD specifically recognized all three GpHRs and inhibited the basal and hormone-stimulated cAMP production without affecting hormone binding. Interestingly, binding of the antibody to all three receptors was abolished by prior incubation of the receptors with the respective hormones, suggesting that the exoloops are buried in the hormone-receptor complexes. The antibody also suppressed the high basal activities of gain-of-function mutations in the HinRs, exoloops, and TMDs such as those involved in precocious puberty and thyroid toxic adenomas. Using the antibody and point/deletion/chimeric receptor mutants, we demonstrate that changes in the HinR-exoloop interactions play an important role in receptor activation. Computational analysis suggests that the mini-TMD antibodies act by conformationally locking the transmembrane helices by means of restraining the exoloops and the juxta-membrane regions. Using GpHRs as a model, we describe a novel computational approach of generating soluble TMD mimics that can be used to explain the role of exoloops during receptor activation and their interplay with TMDs.