951 resultados para Hordeum vulgare L., produtividade


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barley (Hordeum vulgare L.) plants were grown at different photon flux densities ranging from 100 to 1800 μmol m−2 s−1 in air and/or in atmospheres with reduced levels of O2 and CO2. Low O2 and CO2 partial pressures allowed plants to grow under high photosystem II (PSII) excitation pressure, estimated in vivo by chlorophyll fluorescence measurements, at moderate photon flux densities. The xanthophyll-cycle pigments, the early light-inducible proteins, and their mRNA accumulated with increasing PSII excitation pressure irrespective of the way high excitation pressure was obtained (high-light irradiance or decreased CO2 and O2 availability). These findings indicate that the reduction state of electron transport chain components could be involved in light sensing for the regulation of nuclear-encoded chloroplast gene expression. In contrast, no correlation was found between the reduction state of PSII and various indicators of the PSII light-harvesting system, such as the chlorophyll a-to-b ratio, the abundance of the major pigment-protein complex of PSII (LHCII), the mRNA level of LHCII, the light-saturation curve of O2 evolution, and the induced chlorophyll-fluorescence rise. We conclude that the chlorophyll antenna size of PSII is not governed by the redox state of PSII in higher plants and, consequently, regulation of early light-inducible protein synthesis is different from that of LHCII.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sbeIIa and sbeIIb genes, encoding starch-branching enzyme (SBE) IIa and SBEIIb in barley (Hordeum vulgare L.), have been isolated. The 5′ portions of the two genes are strongly divergent, primarily due to the 2064-nucleotide-long intron 2 in sbeIIb. The sequence of this intron shows that it contains a retro-transposon-like element. Expression of sbeIIb but not sbeIIa was found to be endosperm specific. The temporal expression patterns for sbeIIa and sbeIIb were similar and peaked around 12 d after pollination. DNA gel-blot analysis demonstrated that sbeIIa and sbeIIb are both single-copy genes in the barley genome. By fluorescence in situ hybridization, the sbeIIa and sbeIIb genes were mapped to chromosomes 2 and 5, respectively. The cDNA clones for SBEIIa and SBEIIb were isolated and sequenced. The amino acid sequences of SBEIIa and SBEIIb were almost 80% identical. The major structural difference between the two enzymes was the presence of a 94-amino acid N-terminal extension in the SBEIIb precursor. The (β/α)8-barrel topology of the α-amylase superfamily and the catalytic residues implicated in branching enzymes are conserved in both barley enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leaves of two barley (Hordeum vulgare L.) isolines, Alg-R, which has the dominant Mla1 allele conferring hypersensitive race-specific resistance to avirulent races of Blumeria graminis, and Alg-S, which has the recessive mla1 allele for susceptibility to attack, were inoculated with B. graminis f. sp. hordei. Total leaf and apoplastic antioxidants were measured 24 h after inoculation when maximum numbers of attacked cells showed hypersensitive death in Alg-R. Cytoplasmic contamination of the apoplastic extracts, judged by the marker enzyme glucose-6-phosphate dehydrogenase, was very low (less than 2%) even in inoculated plants. Dehydroascorbate, glutathione, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase were present in the apoplast. Inoculation had no effect on the total foliar ascorbate pool size or the redox state. The glutathione content of Alg-S leaves and apoplast decreased, whereas that of Alg-R leaves and apoplast increased after pathogen attack, but the redox state was unchanged in both cases. Large increases in foliar catalase activity were observed in Alg-S but not in Alg-R leaves. Pathogen-induced increases in the apoplastic antioxidant enzyme activities were observed. We conclude that sustained oxidation does not occur and that differential strategies of antioxidant response in Alg-S and Alg-R may contribute to pathogen sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissues expressing mRNAs of three cold-induced genes, blt101, blt14, and blt4.9, and a control gene, elongation factor 1α, were identified in the crown and immature leaves of cultivated barley (Hordeum vulgare L. cv Igri). Hardiness and tissue damage were assessed. blt101 and blt4.9 mRNAs were not detected in control plants; blt14 was expressed in control plants but only in the inner layers of the crown cortex. blt101 was expressed in many tissues of cold-acclimated plants but most strongly in the vascular-transition zone of the crown; blt14 was expressed only in the inner layers of the cortex and in cell layers partly surrounding vascular bundles in the vascular-transition zone; expression of blt4.9, which codes for a nonspecific lipid-transfer protein, was confined to the epidermis of the leaf and to the epidermis of the older parts of the crown. None of the cold-induced genes was expressed in the tunica, although the control gene was most strongly expressed there. Thus, the molecular aspects of acclimation differed markedly between tissues. Damage in the vascular-transition zone of the crown correlated closely with plant survival. Therefore, the strong expression of blt101 and blt14 in this zone may indicate a direct role in freezing tolerance of the crown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To confer abscisic acid (ABA) and/or stress-inducible gene expression, an ABA-response complex (ABRC1) from the barley (Hordeum vulgare L.) HVA22 gene was fused to four different lengths of the 5′ region from the rice (Oryza sativa L.) Act1 gene. Transient assay of β-glucuronidase (GUS) activity in barley aleurone cells shows that, coupled with ABRC1, the shortest minimal promoter (Act1–100P) gives both the greatest induction and the highest level of absolute activity following ABA treatment. Two plasmids with one or four copies of ABRC1 combined with the same Act1–100P and HVA22(I) of barley HVA22 were constructed and used for stable expression of uidA in transgenic rice plants. Three Southern blot-positive lines with the correct hybridization pattern for each construct were obtained. Northern analysis indicated that uidA expression is induced by ABA, water-deficit, and NaCl treatments. GUS activity assays in the transgenic plants confirmed that the induction of GUS activity varies from 3- to 8-fold with different treatments or in different rice tissues, and that transgenic rice plants harboring four copies of ABRC1 show 50% to 200% higher absolute GUS activity both before and after treatments than those with one copy of ABRC1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An improved light-dependent assay was used to characterize the NAD(P)H dehydrogenase (NDH) in thylakoids of barley (Hordeum vulgare L.). The enzyme was sensitive to rotenone, confirming the involvement of a complex I-type enzyme. NADPH and NADH were equally good substrates for the dehydrogenase. Maximum rates of activity were 10 to 19 μmol electrons mg−1 chlorophyll h−1, corresponding to about 3% of linear electron-transport rates, or to about 40% of ferredoxin-dependent cyclic electron-transport rates. The NDH was activated by light treatment. After photoactivation, a subsequent light-independent period of about 1 h was required for maximum activation. The NDH could also be activated by incubation of the thylakoids in low-ionic-strength buffer. The kinetics, substrate specificity, and inhibitor profiles were essentially the same for both induction strategies. The possible involvement of ferredoxin:NADP+ oxidoreductase (FNR) in the NDH activity could be excluded based on the lack of preference for NADPH over NADH. Furthermore, thenoyltrifluoroacetone inhibited the diaphorase activity of FNR but not the NDH activity. These results also lead to the conclusion that direct reduction of plastoquinone by FNR is negligible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barley (Hordeum vulgare L.) leaves were used to isolate and characterize the chloroplast NAD(P)H dehydrogenase complex. The stroma fraction and the thylakoid fraction solubilized with sodium deoxycholate were analyzed by native polyacrylamide gel electrophoresis, and the enzymes detected with NADH and nitroblue tetrazolium were electroeluted. The enzymes electroeluted from band S from the stroma fraction and from bands T1 (ET1) and T2 from the thylakoid fraction solubilized with sodium deoxycholate had ferredoxin-NADP oxidoreductase (FNR; EC 1.18.1.2) and NAD(P)H-FeCN oxidoreductase (NAD[P]H-FeCNR) activities. Their NADPH-FeCNR activities were inhibited by 2′-monophosphoadenosine-5′-diphosphoribose and by enzyme incubation with p-chloromercuriphenylsulfonic acid (p-CMPS), NADPH, and p-CMPS plus NADPH. They presented Michaelis constant NADPH values that were similar to those of FNRs from several sources. Their NADH-FeCNR activities, however, were not inhibited by 2′-monophosphoadenosine-5′-diphosphoribose but were weakly inhibited by enzyme incubation with NADH, p-CMPS, and p-CMPS plus NADH. We found that only ET1 contained two polypeptides of 29 and 35 kD, which reacted with the antibodies raised against the mitochondrial complex I TYKY subunit and the chloroplast ndhA gene product, respectively. However, all three enzymes contained two polypeptides of 35 and 53 kD, which reacted with the antibodies raised against barley FNR and the NADH-binding 51-kD polypeptide of the mitochondrial complex I, respectively. The results suggest that ET1 is the FNR-containing thylakoidal NAD(P)H dehydrogenase complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cysteine endoproteases (EP)-A and EP-B were purified from green barley (Hordeum vulgare L.) malt, and their identity was confirmed by N-terminal amino acid sequencing. EP-B cleavage sites in recombinant type-C hordein were determined by N-terminal amino acid sequencing of the cleavage products, and were used to design internally quenched, fluorogenic peptide substrates. Tetrapeptide substrates of the general formula 2-aminobenzoyl-P2-P1-P1′-P2′-tyrosine(NO2)-aspartic acid, in which cleavage occurs between P1 and P1′, showed that the cysteine EPs preferred phenylalanine, leucine, or valine at P2. Arginine was preferred to glutamine at P1, whereas proline at P2, P1, or P1′ greatly reduced substrate kinetic specificity. Enzyme cleavage of C hordein was mainly determined by the primary sequence at the cleavage site, because elongation of substrates, based on the C hordein sequence, did not make them more suitable substrates. Site-directed mutagenesis of C hordein, in which serine or proline replaced leucine, destroyed primary cleavage sites. EP-A and EP-B were both more active than papain, mostly because of their much lower Km values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dichloroacetamide safeners protect maize (Zea mays L.) against injury from chloroacetanilide and thiocarbamate herbicides. Etiolated maize seedlings have a high-affinity cytosolic-binding site for the safener [3H](R,S)-3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazol-idine ([3H]Saf), and this safener-binding activity (SafBA) is competitively inhibited by the herbicides. The safener-binding protein (SafBP), purified to homogeneity, has a relative molecular weight of 39,000, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and an isoelectric point of 5.5. Antiserum raised against purified SafBP specifically recognizes a 39-kD protein in etiolated maize and sorghum (Sorghum bicolor L.), which have SafBA, but not in etiolated wheat (Triticum aestivum L.), oat (Avena sativa L.), barley (Hordeum vulgare L.), tobacco (Nicotiana tabacum L.), or Arabidopsis, which lack SafBA. SafBP is most abundant in the coleoptile and scarcest in the leaves, consistent with the distribution of SafBA. SBP1, a cDNA encoding SafBP, was cloned using polymerase chain reaction primers based on purified proteolytic peptides. Extracts of Escherichia coli cells expressing SBP1 have strong [3H]Saf binding, which, like binding to the native maize protein, is competitively inhibited by the safener dichlormid and the herbicides S-ethyl dipropylthiocarbamate, alachlor, and metolachlor. SBP1 is predicted to encode a phenolic O-methyltransferase, but SafBP does not O-methylate catechol or caffeic acid. The acquisition of its encoding gene opens experimental approaches for the evaluation of the role of SafBP in response to the relevant safeners and herbicides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify the proteins induced by Fe deficiency, we have compared the proteins of Fe-sufficient and Fe-deficient barley (Hordeum vulgare L.) roots by two-dimensional polyacrylamide gel electrophoresis. Peptide sequence analysis of induced proteins revealed that formate dehydrogenase (FDH), adenine phosphoribosyltransferase, and the Ids3 gene product (for Fe deficiency-specific) increased in Fe-deficient roots. FDH enzyme activity was detected in Fe-deficient roots but not in Fe-sufficient roots. A cDNA encoding FDH (Fdh) was cloned and sequenced. Fdh expression was induced by Fe deficiency. Fdh was also expressed under anaerobic stress and its expression was more rapid than that induced by Fe deficiency. Thus, the expression of Fdh observed in Fe-deficient barley roots appeared to be a secondary effect caused by oxygen deficiency in Fe-deficient plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light-induced damage to photosystem I (PSI) was studied during low-light illumination of barley (Hordeum vulgare L.) at chilling temperatures. A 4-h illumination period induced a significant inactivation of PSI electron transport activity. Flash-induced P700 absorption decay measurements revealed progressive damage to (a) the iron-sulfur clusters FA and FB, (b) the iron-sulfur clusters FA, FB, and FX, and (c) the phylloquinone A1 and the chlorophyll A0 or P700 of the PSI electron acceptor chain. Light-induced PSI damage was also evidenced by partial degradation of the PSI-A and PSI-B proteins and was correlated with the appearance of smaller proteins. Aggravated photodamage was observed upon illumination of barley leaves infiltrated with KCN, which inhibits Cu,Zn-superoxide dismutase and ascorbate peroxidase. This indicates that the photodamage of PSI in barley observed during low-light illumination at chilling temperatures arises because the defense against active oxygen species by active oxygen-scavenging enzymes is insufficient at these specific conditions. The data obtained demonstrate that photoinhibition of PSI at chilling temperatures is an important phenomenon in a cold-tolerant plant species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptide substrates of well-defined protein kinases were microinjected into aleurone protoplasts of barley (Hordeum vulgare L. cv Himalaya) to inhibit, and therefore identify, protein kinase-regulated events in the transduction of the gibberellin (GA) and abscisic acid signals. Syntide-2, a substrate designed for Ca2+- and calmodulin (CaM)-dependent kinases, selectively inhibited the GA response, leaving constitutive and abscisic acid-regulated events unaffected. Microinjection of syntide did not affect the GA-induced increase in cytosolic [Ca2+], suggesting that it inhibited GA action downstream of the Ca2+ signal. When photoaffinity-labeled syntide-2 was electroporated into protoplasts and cross-linked to interacting proteins in situ, it selectively labeled proteins of approximately 30 and 55 kD. A 54-kD, soluble syntide-2 phosphorylating protein kinase was detected in aleurone cells. This kinase was activated by Ca2+ and was CaM independent, but was inhibited by the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (250 μm), suggesting that it was a CaM-domain protein kinase-like activity. These results suggest that syntide-2 inhibits the GA response of the aleurone via an interaction with this kinase, implicating the 54-kD kinase as a Ca2+-dependent regulator of the GA response in these cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant cells contain two major pools of K+, one in the vacuole and one in the cytosol. The behavior of K+ concentrations in these pools is fundamental to understanding the way this nutrient affects plant growth. Triple-barreled microelectrodes have been used to obtain the first fully quantitative measurements of the changes in K+ activity (aK) in the vacuole and cytosol of barley (Hordeum vulgare L.) root cells grown in different K+ concentrations. The electrodes incorporate a pH-selective barrel allowing each measurement to be assigned to either the cytosol or vacuole. The measurements revealed that vacuolar aK declined linearly with decreases in tissue K+ concentration, whereas cytosolic aK initially remained constant in both epidermal and cortical cells but then declined at different rates in each cell type. An unexpected finding was that cytoplasmic pH declined in parallel with cytosolic aK, but acidification of the cytosol with butyrate did not reveal any short-term link between these two parameters. These measurements show the very different responses of the vacuolar and cytosolic K+ pools to changes in K+ availability and also show that cytosolic K+ homeostasis differs quantitatively in different cell types. The data have been used in thermodynamic calculations to predict the need for, and likely mechanisms of, active K+ transport into the vacuole and cytosol. The direction of active K+ transport at the vacuolar membrane changes with tissue K+ status.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fructans play an important role in assimilate partitioning and possibly in stress tolerance in many plant families. Sucrose:fructan 6-fructosyltransferase (6-SFT), an enzyme catalyzing the formation and extension of beta-2,6-linked fructans typical of grasses, was purified from barley (Hordeum vulgare L.). It occurred in two closely similar isoforms with indistinguishable catalytic properties, both consisting of two subunits with apparent masses of 49 and 23 kDa. Oligonucleotides, designed according to the sequences of tryptic peptides from the large subunit, were used to amplify corresponding sequences from barley cDNA. The main fragment generated was cloned and used to screen a barley cDNA expression library. The longest cDNA obtained was transiently expressed in Nicotiana plumbaginifolia protoplasts and shown to encode a functional 6-SFT. The deduced amino acid sequence of the cDNA comprises both subunits of 6-SFT. It has high similarity to plant invertases and other beta-fructosyl hydrolases but only little to bacterial fructosyltransferases catalyzing the same type of reaction as 6-SFT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eukaryotic chromosomes terminate with long stretches of short, guanine-rich repeats. These repeats are added de novo by a specialized enzyme, telomerase. In humans telomeres shorten during differentiation, presumably due to the absence of telomerase activity in somatic cells. This phenomenon forms the basis for several models of telomere role in cellular senescence. Barley (Hordeum vulgare L.) telomeres consist of thousands of TTTAGGG repeats, closely resembling other higher eukaryotes. In vivo differentiation and aging resulted in reduction of terminal restriction fragment length paralleled by a decrease of telomere repeat number. Dedifferentiation in callus culture resulted in an increase of the terminal restriction fragment length and in the number of telomere repeats. Long-term callus cultures had very long telomeres. Absolute telomere lengths were genotype dependent, but the relative changes due to differentiation, dedifferentiation, and long-term callus culture were consistent among genotypes. A model is presented to describe the potential role of the telomere length in regulation of a cell's mitotic activity and senescence.