916 resultados para Homogenous catalysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A clean, efficient and fast method for esterification reactions for sterically (biodiesels) or otherwise inactive (aromatic) precursors was developed, using catalysts supported in a solid phase under solvent free conditions, and whose reactions can be promoted by MW irradiation. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the formation of condensates in the presence of a constant magnetic field in 2+1 dimensions is extremely unstable. It disappears as soon as a heat bath is introduced with or without a chemical potential. The value of the condensate as well as other observables are shown to become nonanalytic at finite temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a chemical medium for preservation of tissues, glycerin has shown good results because it maintains the cellular integrity despite the tissue dehydration it causes. Taking advantage of the osteoinducing properties of the osseous matrix and glycerin as a proper medium for tissue preservation, osseous matrix was implanted in rat tibias. Twenty-four rats were used, each receiving two surgical wounds. In one of the wounds an osseous matrix preserved in 98% glycerin was implanted and the other received a matrix without preservatives. Six animals were sacrificed on days 10, 20, 30 and 60 post-implant. After routine histological processing, the specimens were stained in hematoxylin-eosin and Masson's trichrome. The results showed that the matrixes preserved in glycerin presented faster resorption with replacement by newly formed tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The aim of this work was to evaluate the effectiveness of homogenous demineralized dentin matrix (HDDM) slices in surgical bone defects created in the mandibles of rabbits and occluded with a polytetrafluoroethylene (PTFE) membrane in the promotion of bone growth. Materials and Methods: Surgical bone defects were created in 36 adult rabbits and divided into 4 groups: bone defect (control), bone defect with PTFE membrane, bone defect with HDDM, and bone defect with both HDDM and a PTFE membrane (HDDM + PTFE). The rabbits were sacrificed after 30, 60, and 90 days, and the bone defects were examined histologically and by histomorphometric analysis (analysis of variance and the Tukey test). Results: The volume of newly formed bone matrix was significantly greater in the HDDM and HDDM + PTFE groups than in the control and PTFE groups. The discrete inflammatory reaction found in the HDDM and HDDM + PTFE groups did not prevent the osteopromotive activity of the dentin matrix. Discussion: HDDM slices were biocompatible and were resorbed during the bone remodeling process. They stimulated the newly formed bone until 30 days after implantation. Conclusion: Bone repair was accelerated in the bone defects treated with HDDM in comparison to the control group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The aim of this work was to evaluate the bone-repair process after implantation of homogenous demineralized dentin matrix (HDDM) slices in surgical defects created in the parietal bones of rabbits with alloxan-induced diabetes. Materials and Methods: Forty-eight rabbits were selected and divided into 4 groups of 12 rabbits: the control group, diabetic rabbits (D), diabetic rabbits with a PTFE barrier (D-PTFE), and diabetic rabbits with a PTFE barrier and with slices of homogenous demineralized dentin matrix (D-PTFE+HDDM). The diabetic animals received a single dose of alloxan monohydrate (90 mg/kg) intravenously on the marginal ear vein, and their blood glucose was verified daily. The rabbits were sacrificed after 15, 30, 60, and 90 days. The histologic findings show both better bone structure and significantly greater bone density, as determined by histomorphometric analysis, for the D-PTFE + HDDM group than for the other 3 groups (P < .01). It was also observed that the mean bone density increased gradually from 15 to 90 days (except in the D-PTFE group). Conclusion: It was concluded that the HDDM was biocompatible with the bone repair of diabetic rabbits and that HDDM slices stimulated bone tissue formation. Facilitation of bone repair with HDDM could be useful in diabetic patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research evaluated the bone repair process after implantation of homogenous demineralized dentin matrix (HDDM) in surgical defects in the parietal bone of rabbits with alloxan-induced diabetes, using a polytetrafluorethylene (PTFe) barrier for guided bone regeneration. Thirty-six rabbits were used and divided into four groups: control (C, n = 12), diabetic (D, n = 12, left parietal bone), diabetic with PTFe (DPTFe, same 12 rabbits, right parietal bone), and diabetic with PTFe associated to HDDM (D-PTFe+HDDM, n = 12). Bone defects were created in the parietal bone of the rabbits and the experimental treatments were performed, where applicable. The rabbits were sacrificed after 15, 30, 60 and 90 days. The bone defects were examined radiographically and by optical density (ANOVA and Tukey test, p < .05). The radiographic findings showed that the D-PTFe+HDDM group presented greater radiopacity and better trabecular bone arrangement when compared to that of the C, D and D-PTFe groups. The statistical analysis showed significant differences in the optical density of the newly formed bone among the studied groups. It was possible to conclude that HDDM was biocompatible in diabetic rabbits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was the preparation of a silsesquioxane functionalized with eight chloropropyl chains (T8-PrCl) and of a new derivative functionalized with a pendant linear chain (2-amino-1,3,4-thiadiazole - ATD; T8-Pr-ATD). The two nanostructured materials were characterized by 13C and 29Si NMR, FTIR and elemental analysis. The new nanostructured material, octakis[3-(2-amino-1,3,4-thiadiazole)propyl] octasilsesquioxane (T8-Pr-ATD), was tested as a ligand for transition-metal ions with a special attention to adsorption isotherms. The adsorption was performed using a batchwise process and the organofunctionalized surface showed the ability to adsorb the metal ions Cu (II), Co (II), and Ni (II) from water and ethanol. The adsorption isotherms were fitted by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) model. The kinetics of adsorption of metals were performed using three models such as pseudo-first order, pseudo-second order and Elovich. The Langmuir and Elovich models were the most appropriate to describe the adsorption and kinetic data, respectively. Furthermore, the T8-Pr-ATD was successfully applied to the analysis of environmental samples (river and sea water). Subsequently, a new nanomaterial was prepared by functionalization of the T8-Pr-ATD with a Mo (II) organometallic complex (T8-Pr-ATD-Mo). Only a few works in the literature have reported this type of substitution, and none dealt with ATD and Mo (II) complexes. The new Mo-silsesquioxane organometallic nanomaterial was tested as precursor in the epoxidation of cyclooctene and styrene. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was the preparation of a silica gel functionalized successively with 3-chloropropyltrimethoxysilane (SG-PrCl) and thiourea (SG-Pr-THIO), and its application in adsorption and catalysis. The materials were characterized by 13C and 29Si NMR, FTIR, scanning electron micrographs (SEM), analysis of nitrogen and elemental analysis. Aiming at its application in adsorption, the [3-(thiourea)-propyl] silica gel (SG-Pr-THIO) was tested as an adsorbent for transition-metal ions using a batchwise process. The organofunctionalized surface showed the ability to adsorb the metal ions Cd(ii), Cu(ii), Ni(ii), Pb(ii) and Co(ii) from water, ethanol and acetone. The adsorption isotherms were fitted by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) models. The kinetics of adsorption of metals were performed using three models such as pseudo-first order, pseudo-second order and Elovich. The Langmuir and pseudo-first order models were the most appropriate to describe the adsorption and kinetic data, respectively. With the purpose of application in catalysis, the SG-Pr-THIO was reacted with a Mo(ii) organometallic complex, forming the new material SG-Pr-THIO-Mo. Only a few works in the literature have reported this type of reaction, and none dealt with thiourea and Mo(ii) complexes. The new Mo-silica gel organometallic material was tested as catalyst in the epoxidation of cyclooctene and styrene. © 2013 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, modifications of alumina surface with of alkaline earth metal oxides were studied, using the polymeric precursor method. The modified compounds were characterized by X-ray diffraction, nitrogen adsorption-desorption and scanning electron microscopy. The catalytical properties of these new catalysts were evaluated for the transesterification reaction of babassu oil. It is observed that the transesterification reaction of babassu oil with methanol was successfully carried out using the modified alumina samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effects of homogenous demineralized dentin matrix (HDDM) slices and platelet-rich plasma (PRP) in surgical defects created in the parietal bones of alloxan-induced diabetic rabbits, treated with a guided bone regeneration technique. Biochemical, radiographic, and histological analyses were performed. Sixty adult New Zealand rabbits were divided into five groups of 12: normoglycaemic (control, C), diabetic (D), diabetic with a PTFE membrane (DM), diabetic with a PTFE membrane and HDDM slices (DM-HDDM), and diabetic with PTFE membrane and PRP (DM-PRP). The quantity and quality of bone mass was greatest in the DM-HDDM group (respective radiographic and histological analyses: at 15 days, 71.70±16.50 and 50.80±1.52; 30 days, 62.73±16.51 and 54.20±1.23; 60 days, 63.03±11.04 and 59.91±3.32; 90 days, 103.60±24.86 and 78.99±1.34), followed by the DM-PRP group (respective radiographic and histological analyses: at 15 days 23.00±2.74 and 20.66±7.45; 30 days 31.92±6.06 and 25.31±5.59; 60 days 25.29±16.30 and 46.73±2.07; 90 days 38.10±14.04 and 53.38±9.20). PRP greatly enhanced vascularization during the bone repair process. Abnormal calcium metabolism was statistically significant in the DM-PRP group (P<0.001) for all four time intervals studied, especially when compared to the DM-HDDM group. Alkaline phosphatase activity was significantly higher in the DM-HDDM group (P<0.001) in comparison to the C, D, and DM-PRP groups, confirming the findings of intense osteoblastic activity and increased bone mineralization. Thus, HDDM promoted superior bone architectural microstructure in bone defects in diabetic rabbits due to its effective osteoinductive and osteoconductive activity, whereas PRP stimulated angiogenesis and red bone marrow formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)