936 resultados para Hold-up problem
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
This thesis reports the outcomes of an investigation into students’ experience of Problem-based learning (PBL) in virtual space. PBL is increasingly being used in many fields including engineering education. At the same time many engineering education providers are turning to online distance education. Unfortunately there is a dearth of research into what constitutes an effective learning experience for adult learners who undertake PBL instruction through online distance education. Research was therefore focussed on discovering the qualitatively different ways that students experience PBL in virtual space. Data was collected in an electronic environment from a course, which adopted the PBL strategy and was delivered entirely in virtual space. Students in this course were asked to respond to open-ended questions designed to elicit their learning experience in the course. Data was analysed using the phenomenographical approach. This interpretative research method concentrated on mapping the qualitative differences in students’ interpretations of their experience in the course. Five qualitatively different ways of experiencing were discovered: Conception 1: ‘A necessary evil for program progression’; Conception 2: ‘Developing skills to understand, evaluate, and solve technical Engineering and Surveying problems’; Conception 3: ‘Developing skills to work effectively in teams in virtual space’; Conception 4: ‘A unique approach to learning how to learn’; Conception 5: ‘Enhancing personal growth’. Each conception reveals variation in how students attend to learning by PBL in virtual space. Results indicate that the design of students’ online learning experience was responsible for making students aware of deeper ways of experiencing PBL in virtual space. Results also suggest that the quality and quantity of interaction with the team facilitator may have a significant impact on the student experience in virtual PBL courses. The outcomes imply pedagogical strategies can be devised for shifting students’ focus as they engage in the virtual PBL experience to effectively manage the student learning experience and thereby ensure that they gain maximum benefit. The results from this research hold important ramifications for graduates with respect to their ease of transition into professional work as well as their later professional competence in terms of problem solving, ability to transfer basic knowledge to real-life engineering scenarios, ability to adapt to changes and apply knowledge in unusual situations, ability to think critically and creatively, and a commitment to continuous life-long learning and self-improvement.
Resumo:
The theme of this conference comes from the epitaph on the Lewis Carroll’s gravesite. “Is All our Life then But A Dream?” This seems fitting for a time when so much change in the terrain of English makes us feel as if we are somnambulating through a surrealist landscape. Like Lewis Carroll’s Alice, (Carroll, 2003) we might find ourselves at strange tea parties with bureaucratic mad hatters, and just when we think we have a grasp of applying new theory in our teaching, we fall down another rabbit hole, to swim in confusion as some queen calls out, ‘off with their heads!’. The shifting ground in English inevitably moves in response to waves of theory influencing classroom practice. Each new paradigm has claimed to liberate language learners from the flaws of the previous model. Each linguist or literary theorist who shaped the new paradigm no doubt dreamt of a new population emerging from school as more powerfully literate citizens than the previous generation.
Resumo:
In this paper, the train scheduling problem is modelled as a blocking parallel-machine job shop scheduling (BPMJSS) problem. In the model, trains, single-track sections and multiple-track sections, respectively, are synonymous with jobs, single machines and parallel machines, and an operation is regarded as the movement/traversal of a train across a section. Due to the lack of buffer space, the real-life case should consider blocking or hold-while-wait constraints, which means that a track section cannot release and must hold the train until next section on the routing becomes available. Based on literature review and our analysis, it is very hard to find a feasible complete schedule directly for BPMJSS problems. Firstly, a parallel-machine job-shop-scheduling (PMJSS) problem is solved by an improved shifting bottleneck procedure (SBP) algorithm without considering blocking conditions. Inspired by the proposed SBP algorithm, feasibility satisfaction procedure (FSP) algorithm is developed to solve and analyse the BPMJSS problem, by an alternative graph model that is an extension of the classical disjunctive graph models. The proposed algorithms have been implemented and validated using real-world data from Queensland Rail. Sensitivity analysis has been applied by considering train length, upgrading track sections, increasing train speed and changing bottleneck sections. The outcomes show that the proposed methodology would be a very useful tool for the real-life train scheduling problems
Resumo:
Many large coal mining operations in Australia rely heavily on the rail network to transport coal from mines to coal terminals at ports for shipment. Over the last few years, due to the fast growing demand, the coal rail network is becoming one of the worst industrial bottlenecks in Australia. As a result, this provides great incentives for pursuing better optimisation and control strategies for the operation of the whole rail transportation system under network and terminal capacity constraints. This PhD research aims to achieve a significant efficiency improvement in a coal rail network on the basis of the development of standard modelling approaches and generic solution techniques. Generally, the train scheduling problem can be modelled as a Blocking Parallel- Machine Job-Shop Scheduling (BPMJSS) problem. In a BPMJSS model for train scheduling, trains and sections respectively are synonymous with jobs and machines and an operation is regarded as the movement/traversal of a train across a section. To begin, an improved shifting bottleneck procedure algorithm combined with metaheuristics has been developed to efficiently solve the Parallel-Machine Job- Shop Scheduling (PMJSS) problems without the blocking conditions. Due to the lack of buffer space, the real-life train scheduling should consider blocking or hold-while-wait constraints, which means that a track section cannot release and must hold a train until the next section on the routing becomes available. As a consequence, the problem has been considered as BPMJSS with the blocking conditions. To develop efficient solution techniques for BPMJSS, extensive studies on the nonclassical scheduling problems regarding the various buffer conditions (i.e. blocking, no-wait, limited-buffer, unlimited-buffer and combined-buffer) have been done. In this procedure, an alternative graph as an extension of the classical disjunctive graph is developed and specially designed for the non-classical scheduling problems such as the blocking flow-shop scheduling (BFSS), no-wait flow-shop scheduling (NWFSS), and blocking job-shop scheduling (BJSS) problems. By exploring the blocking characteristics based on the alternative graph, a new algorithm called the topological-sequence algorithm is developed for solving the non-classical scheduling problems. To indicate the preeminence of the proposed algorithm, we compare it with two known algorithms (i.e. Recursive Procedure and Directed Graph) in the literature. Moreover, we define a new type of non-classical scheduling problem, called combined-buffer flow-shop scheduling (CBFSS), which covers four extreme cases: the classical FSS (FSS) with infinite buffer, the blocking FSS (BFSS) with no buffer, the no-wait FSS (NWFSS) and the limited-buffer FSS (LBFSS). After exploring the structural properties of CBFSS, we propose an innovative constructive algorithm named the LK algorithm to construct the feasible CBFSS schedule. Detailed numerical illustrations for the various cases are presented and analysed. By adjusting only the attributes in the data input, the proposed LK algorithm is generic and enables the construction of the feasible schedules for many types of non-classical scheduling problems with different buffer constraints. Inspired by the shifting bottleneck procedure algorithm for PMJSS and characteristic analysis based on the alternative graph for non-classical scheduling problems, a new constructive algorithm called the Feasibility Satisfaction Procedure (FSP) is proposed to obtain the feasible BPMJSS solution. A real-world train scheduling case is used for illustrating and comparing the PMJSS and BPMJSS models. Some real-life applications including considering the train length, upgrading the track sections, accelerating a tardy train and changing the bottleneck sections are discussed. Furthermore, the BPMJSS model is generalised to be a No-Wait Blocking Parallel- Machine Job-Shop Scheduling (NWBPMJSS) problem for scheduling the trains with priorities, in which prioritised trains such as express passenger trains are considered simultaneously with non-prioritised trains such as freight trains. In this case, no-wait conditions, which are more restrictive constraints than blocking constraints, arise when considering the prioritised trains that should traverse continuously without any interruption or any unplanned pauses because of the high cost of waiting during travel. In comparison, non-prioritised trains are allowed to enter the next section immediately if possible or to remain in a section until the next section on the routing becomes available. Based on the FSP algorithm, a more generic algorithm called the SE algorithm is developed to solve a class of train scheduling problems in terms of different conditions in train scheduling environments. To construct the feasible train schedule, the proposed SE algorithm consists of many individual modules including the feasibility-satisfaction procedure, time-determination procedure, tune-up procedure and conflict-resolve procedure algorithms. To find a good train schedule, a two-stage hybrid heuristic algorithm called the SE-BIH algorithm is developed by combining the constructive heuristic (i.e. the SE algorithm) and the local-search heuristic (i.e. the Best-Insertion- Heuristic algorithm). To optimise the train schedule, a three-stage algorithm called the SE-BIH-TS algorithm is developed by combining the tabu search (TS) metaheuristic with the SE-BIH algorithm. Finally, a case study is performed for a complex real-world coal rail network under network and terminal capacity constraints. The computational results validate that the proposed methodology would be very promising because it can be applied as a fundamental tool for modelling and solving many real-world scheduling problems.
Resumo:
In recent years the development and use of crash prediction models for roadway safety analyses have received substantial attention. These models, also known as safety performance functions (SPFs), relate the expected crash frequency of roadway elements (intersections, road segments, on-ramps) to traffic volumes and other geometric and operational characteristics. A commonly practiced approach for applying intersection SPFs is to assume that crash types occur in fixed proportions (e.g., rear-end crashes make up 20% of crashes, angle crashes 35%, and so forth) and then apply these fixed proportions to crash totals to estimate crash frequencies by type. As demonstrated in this paper, such a practice makes questionable assumptions and results in considerable error in estimating crash proportions. Through the use of rudimentary SPFs based solely on the annual average daily traffic (AADT) of major and minor roads, the homogeneity-in-proportions assumption is shown not to hold across AADT, because crash proportions vary as a function of both major and minor road AADT. For example, with minor road AADT of 400 vehicles per day, the proportion of intersecting-direction crashes decreases from about 50% with 2,000 major road AADT to about 15% with 82,000 AADT. Same-direction crashes increase from about 15% to 55% for the same comparison. The homogeneity-in-proportions assumption should be abandoned, and crash type models should be used to predict crash frequency by crash type. SPFs that use additional geometric variables would only exacerbate the problem quantified here. Comparison of models for different crash types using additional geometric variables remains the subject of future research.
Resumo:
Cultural theory breaks with Modern analysis by rejecting traditional notions of race, gender, class and sexuality. In doing so, alternative frameworks such as Post-Feminism emerge which are useful for thinking about culture, technology and what our interactions with it mean. From a Post-Feminist perspective it can be seen how in our multi-cultural, post-industrial, digitized world, there is space to move beyond traditional ways of dividing up society such as ‘male’ and ‘female’. We are then free to re-construct our identity in light of a rich diversity of individually relevant experiences. Therefore, in order to get a better understanding of the highly nuanced cultural interactions that characterize our use of technology, this paper argues against using the inherently stereotyped lens of gender and allowing a new set of user needs to emerge.