980 resultados para Hoisting machinery.
Resumo:
Sound perception requires functional hair cell mechanotransduction (MET) machinery, including the MET channels and tip-link proteins. Prior work showed that uptake of ototoxic aminoglycosides (AG) into hair cells requires functional MET channels. In this study, we examined whether tip-link proteins, including Cadherin 23 (Cdh23), regulate AG entry into hair cells. Using time-lapse microscopy on cochlear explants, we found rapid uptake of gentamicin-conjugated Texas Red (GTTR) into hair cells from three-day-old Cdh23(+/+) and Cdh23(v2J/+) mice, but failed to detect GTTR uptake in Cdh23(v2J/v2J) hair cells. Pre-treatment of wildtype cochleae with the calcium chelator 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA) to disrupt tip-links also effectively reduced GTTR uptake into hair cells. Both Cdh23(v2J/v2J) and BAPTA-treated hair cells were protected from degeneration caused by gentamicin. Six hours after BAPTA treatment, GTTR uptake remained reduced in comparison to controls; by 24 hours, drug uptake was comparable between untreated and BAPTA-treated hair cells, which again became susceptible to cell death induced by gentamicin. Together, these results provide genetic and pharmacologic evidence that tip-links are required for AG uptake and toxicity in hair cells. Because tip-links can spontaneously regenerate, their temporary breakage offers a limited time window when hair cells are protected from AG toxicity.
Resumo:
The functions of ribosomes in translation are complex and involve different types of activities critical for decoding the genetic code, linkage of amino acids via amide bonds to form polypeptide chains, as well as the release and proper targeting of the synthesized protein. Non-protein-coding RNAs (ncRNAs) have been recognized to be crucial in establishing regulatory networks.1 However all of the recently discovered ncRNAs involved in translation regulation target the mRNA rather than the ribosome. The main goal of this project is to identify potential novel ncRNAs that directly bind and possibly regulate the ribosome during protein biosynthesis. To address this question we applied various stress conditions to the archaeal model organism Haloferax volcanii and deep-sequenced the ribosome-associated small ncRNA interactome. In total we identified 6.250 ncRNA candidates. Significantly, we observed the emersed presence of tRNA-derived fragments (tRFs). These tRFs have been identified in all domains of life and represent a growing, yet functionally poorly understood, class of ncRNAs. Here we present evidence that tRFs from H. volcanii directly bind to ribosomes. In the presented genomic screen of the ribosome-associated RNome a 26 residue long fragment originating from the 5’ part of valine tRNA was by far the most abundant tRF. The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. As a consequence of ribosome binding, Val-tRF reduces protein synthesis by interfering with peptidyl transferase activity. Therefore this tRF functions as ribosome-bound small ncRNA capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production.2 Currently we are investigating the binding site of this tRF on the 30S subunit in more detail.
Resumo:
In 2012, the complete genomic sequence of a new and potentially harmful influenza A-like virus from bats (H17N10) was identified. However, infectious influenza virus was neither isolated from infected bats nor reconstituted, impeding further characterization of this virus. Here we show the generation of an infectious chimeric virus containing six out of the eight bat virus genes, with the remaining two genes encoding the haemagglutinin and neuraminidase proteins of a prototypic influenza A virus. This engineered virus replicates well in a broad range of mammalian cell cultures, human primary airway epithelial cells and mice, but poorly in avian cells and chicken embryos without further adaptation. Importantly, the bat chimeric virus is unable to reassort with other influenza A viruses. Although our data do not exclude the possibility of zoonotic transmission of bat influenza viruses into the human population, they indicate that multiple barriers exist that makes this an unlikely event.
Resumo:
Trypanosomes show an intriguing organization of their mitochondrial DNA into a catenated network, the kinetoplast DNA (kDNA). While more than 30 proteins involved in kDNA replication have been described, only few components of kDNA segregation machinery are currently known. Electron microscopy studies identified a high-order structure, the tripartite attachment complex (TAC), linking the basal body of the flagellum via the mitochondrial membranes to the kDNA. Here we describe TAC102, a novel core component of the TAC, which is essential for proper kDNA segregation during cell division. Loss of TAC102 leads to mitochondrial genome missegregation but has no impact on proper organelle biogenesis and segregation. The protein is present throughout the cell cycle and is assembled into the newly developing TAC only after the pro-basal body has matured indicating a hierarchy in the assembly process. Furthermore, we provide evidence that the TAC is replicated de novo rather than using a semi-conservative mechanism. Lastly, we demonstrate that TAC102 lacks an N-terminal mitochondrial targeting sequence and requires sequences in the C-terminal part of the protein for its proper localization.
Resumo:
Sequestration of red blood cells infected with the human malaria parasite Plasmodium falciparum in organs such as the brain is considered important for pathogenicity. A similar phenomenon has been observed in mouse models of malaria, using the rodent parasite Plasmodium berghei, but it is unclear whether the P. falciparum proteins known to be involved in this process are conserved in the rodent parasite. Here we identify the P. berghei orthologues of two such key factors of P. falciparum, SBP1 and MAHRP1. Red blood cells infected with P. berghei parasites lacking SBP1 or MAHRP1a fail to bind the endothelial receptor CD36 and show reduced sequestration and virulence in mice. Complementation of the mutant P. berghei parasites with the respective P. falciparum SBP1 and MAHRP1 orthologues restores sequestration and virulence. These findings reveal evolutionary conservation of the machinery underlying sequestration of divergent malaria parasites and support the notion that the P. berghei rodent model is an adequate tool for research on malaria virulence.
Resumo:
Some neural bruise prediction models have been implemented in the laboratory, for the most traded fruit species and varieties, allowing the prediction of the acceptability or rejectability for damages, with respect to the EC Standards. Different models have been built for both quasi-static (compression) and dynamic (impact) loads covering the whole commercial ripening period of fruits. A simulation process has been developed gathering the information on laboratory bruise models and load sensor calibrations for different electronic devices (IS-100 and DEA-1, for impact and compression loads respectively). Some evaluation methodology has been designed gathering the information on the mechanical properties of fruits and the loading records of electronic devices. The evaluation system allows to determine the current stage of fruit handling process and machinery.
Resumo:
In hippocampal neurons, neurotransmitter release can be regulated by protein kinase A (PKA) through a direct action on the secretory machinery. To identify the site of PKA modulation, we have taken advantage of the ability of the neurotoxin Botulinum A to cleave the synaptic protein SNAP-25. Cleavage of this protein decreases the Ca2+ responsiveness of the secretory machinery by partially uncoupling Ca2+-sensing from fusion per se. This is expressed as a shift toward higher Ca2+ levels of the Ca2+ to neurotransmitter release relationship and as a perturbation of synaptic delay under conditions where secretion induced by the Ca2+-independent secretagogue ruthenium red is unimpaired. We find that SNAP-25 cleavage also perturbs PKA-dependent modulation of secretion; facilitation of ruthenium red-evoked neurotransmitter release by the adenylyl cyclase activator forskolin is blocked completely after Botulinum toxin A action. Together with our observation that forskolin modifies the Ca2+ to neurotransmitter release relationship, our results suggest that SNAP-25 acts as a functional linker between Ca2+ detection and fusion and that PKA modulates an early step in the secretory machinery related to calcium sensing to facilitate synaptic transmission.
Resumo:
Rer1p, a Golgi membrane protein, is required for the correct localization of an endoplasmic reticulum (ER) membrane protein, Sec12p, by a retrieval mechanism from the cis-Golgi to the ER. To test whether or not the role of Rer1p is common to multiple ER membrane proteins, we examined the localization of two other ER membrane proteins, Sec71p and Sec63p, in the wild-type and rer1 mutant yeast cells, using their fusions with an α-mating factor precursor (Mfα1p). Although Sec71p and Sec63p have completely different topology from Sec12p, their Mfα1p fusion proteins were also mislocalized to the trans-Golgi in the rer1 mutant. Overexpression of these fusions caused their mislocalization to the trans-Golgi even in the wild-type cells, and this mislocalization was partially suppressed by the co-overexpression of Rer1p. Either Sec71p or an artificial chimeric protein whose ER localization depends on Rer1p gave a competitive effect on the localization of the Mfα1-Sec71p fusion, which was abolished in rer1. Thus, Rer1p appears to be one of the common limiting components in the retrieval machinery for ER membrane proteins. The results also suggest that Sec71p and Sec63p depend on ER-Golgi recycling, at least partly, for ER localization. We also examined the effect of a mutation in α-COP, a subunit of yeast coatomer, on the localization of these ER membrane proteins. The Mfα1p fusions of Sec12p, Sec71p, and Sec63p were all more or less mislocalized in ret1–1. These observations imply that the roles of Rer1p and coatomer are much more general than thought before.
Resumo:
The MAL proteolipid is a nonglycosylated integral membrane protein found in glycolipid-enriched membrane microdomains. In polarized epithelial Madin-Darby canine kidney cells, MAL is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin. MAL is thus part of the integral machinery for glycolipid-enriched membrane–mediated apical transport. At steady state, MAL is predominantly located in perinuclear vesicles that probably arise from the trans-Golgi network (TGN). To act on membrane traffic and to prevent their accumulation in the target compartment, integral membrane elements of the protein-sorting machinery should be itinerant proteins that cycle between the donor and target compartments. To establish whether MAL is an itinerant protein, we engineered the last extracellular loop of MAL by insertion of sequences containing the FLAG epitope or with sequences containing residues that became O-glycosylated within the cells or that displayed biotinylatable groups. The ectopic expression of these modified MAL proteins allowed us to investigate the surface expression of MAL and its movement through different compartments after internalization with the use of a combination of assays, including surface biotinylation, surface binding of anti-FLAG antibodies, neuraminidase sensitivity, and drug treatments. Immunofluorescence and flow cytometric analyses indicated that, in addition to its Golgi localization, MAL was also expressed on the cell surface, from which it was rapidly internalized. This retrieval implies transport through the endosomal pathway and requires endosomal acidification, because it can be inhibited by drugs such as chloroquine, monensin, and NH4Cl. Resialylation experiments of surface MAL treated with neuraminidase indicated that ∼30% of the internalized MAL molecules were delivered to the TGN, probably to start a new cycle of cargo transport. Together, these observations suggest that, as predicted for integral membrane members of the late protein transport machinery, MAL is an itinerant protein cycling between the TGN and the plasma membrane.
Resumo:
We have examined the distribution of RNA transcription and processing factors in the amphibian oocyte nucleus or germinal vesicle. RNA polymerase I (pol I), pol II, and pol III occur in the Cajal bodies (coiled bodies) along with various components required for transcription and processing of the three classes of nuclear transcripts: mRNA, rRNA, and pol III transcripts. Among these components are transcription factor IIF (TFIIF), TFIIS, splicing factors, the U7 small nuclear ribonucleoprotein particle, the stem–loop binding protein, SR proteins, cleavage and polyadenylation factors, small nucleolar RNAs, nucleolar proteins that are probably involved in pre-rRNA processing, and TFIIIA. Earlier studies and data presented here show that several of these components are first targeted to Cajal bodies when injected into the oocyte and only subsequently appear in the chromosomes or nucleoli, where transcription itself occurs. We suggest that pol I, pol II, and pol III transcription and processing components are preassembled in Cajal bodies before transport to the chromosomes and nucleoli. Most components of the pol II transcription and processing pathway that occur in Cajal bodies are also found in the many hundreds of B-snurposomes in the germinal vesicle. Electron microscopic images show that B-snurposomes consist primarily, if not exclusively, of 20- to 30-nm particles, which closely resemble the interchromatin granules described from sections of somatic nuclei. We suggest the name pol II transcriptosome for these particles to emphasize their content of factors involved in synthesis and processing of mRNA transcripts. We present a model in which pol I, pol II, and pol III transcriptosomes are assembled in the Cajal bodies before export to the nucleolus (pol I), to the B-snurposomes and eventually to the chromosomes (pol II), and directly to the chromosomes (pol III). The key feature of this model is the preassembly of the transcription and processing machinery into unitary particles. An analogy can be made between ribosomes and transcriptosomes, ribosomes being unitary particles involved in translation and transcriptosomes being unitary particles for transcription and processing of RNA.