200 resultados para Hog lice


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims/hypothesis: In previous studies we have shown that extravasated, modified LDL is associated with pericyte loss, an early feature of diabetic retinopathy (DR). Here we sought to determine detailed mechanisms of this LDLinduced pericyte loss.

Methods: Human retinal capillary pericytes (HRCP) were exposed to ‘highly-oxidised glycated’ LDL (HOG-LDL) (a model of extravasated and modified LDL) and to 4-hydroxynonenal or 7-ketocholesterol (components of oxidised LDL), or to native LDL for 1 to 24 h with or without 1 h of pretreatment with inhibitors of the following: (1) the scavenger receptor (polyinosinic acid); (2) oxidative stress (N-acetyl cysteine); (3) endoplasmic reticulum (ER) stress (4-phenyl butyric acid); and (4) mitochondrial dysfunction (cyclosporin A). Oxidative stress, ER stress, mitochondrial dysfunction, apoptosis and autophagy were assessed using techniques including western blotting, immunofluorescence, RT-PCR, flow cytometry and TUNEL assay. To assess the relevance of the results in vivo, immunohistochemistry was used to detect the ER stress chaperon, 78 kDa glucose-regulated protein, and the ER sensor, activating transcription factor 6, in retinas from a mouse model of DR that mimics exposure of the retina to elevated glucose and elevated LDL levels, and in retinas from human participants with and without diabetes and DR.

Results: Compared with native LDL, HOG-LDL activated oxidative and ER stress in HRCP, resulting in mitochondrial dysfunction, apoptosis and autophagy. In a mouse model of diabetes and hyperlipidaemia (vs mouse models of either condition alone), retinal ER stress was enhanced. ER stress was also enhanced in diabetic human retina and correlated with the severity of DR.

Conclusions/interpretation: Cell culture, animal, and human data suggest that oxidative stress and ER stress are induced by modified LDL, and are implicated in pericyte loss in DR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter traces the trajectory of Latin translations of Milton’s vernacular verse most capably encapsulated by Latin verse paraphrases of Paradise Lost by a certain J.C. (1686), William Hog (1690), Thomas Power (1691) and by such eighteenth-century renderings as that of William Dobson (1753). Situating its analysis in relation to early modern pedagogical practices, including the double translation system, and informed by current translational theory, the analysis considers the multifunctional aims and consequences of Latinising Milton: the elaboration and elucidation of a vernacular original via Latin exegesis and paraphrase; recourse to Latin as a means of facilitating a wider European readership. Integral to the discussion is an alertness to the contemporary and later reception of Milton’s work, and an assessment of ways in which Latinitas enabled the invocation of classical intertexts which in themselves offer a nuanced reading of Miltonic verse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The risk of diabetic retinopathy is associated with the presence of both oxidative stress and toxic eicosanoids. Whether oxidative stress actually causes diabetic retinopathy via the generation of toxic eicosanoids, however, remains unknown. The aim of the present study was to determine whether tyrosine nitration of prostacyclin synthase (PGIS) contributes to retinal cell death in vitro and in vivo. Exposure of human retinal pericytes to heavily oxidized and glycated LDL (HOG-LDL), but not native forms of LDL (N-LDL), for 24 hours significantly increased pericyte apoptosis, accompanied by increased tyrosine nitration of PGIS and decreased PGIS activity. Inhibition of the thromboxane receptor or cyclooxygenase-2 dramatically attenuated HOG-LDL-induced apoptosis without restoring PGIS activity. Administration of superoxide dismutase (to scavenge superoxide anions) or L-N(G)-nitroarginine methyl ester (L-NAME, a nonselective nitric oxide synthase inhibitor) restored PGIS activity and attenuated pericyte apoptosis. In Akita mouse retinas, diabetes increased intraretinal levels of oxidized LDL and glycated LDL, induced PGIS nitration, enhanced apoptotic cell death, and impaired blood-retinal barrier function. Chronic administration of tempol, a superoxide scavenger, reduced intraretinal oxidized LDL and glycated LDL levels, PGIS nitration, and retina cell apoptosis, thereby preserving the integrity of blood-retinal barriers. In conclusion, oxidized LDL-mediated PGIS nitration and associated thromboxane receptor stimulation might be important in the initiation and progression of diabetic retinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidation of LDLs is considered a key step in the development of atherosclerosis. How LDL oxidation contributes to atherosclerosis remains poorly defined. Here we report that oxidized and glycated LDL (HOG-LDL) causes aberrant endoplasmic reticulum (ER) stress and that the AMP-activated protein kinase (AMPK) suppressed HOG-LDL-triggered ER stress in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pericyte loss is a cardinal feature of early diabetic retinopathy. We previously reported that highly oxidized-glycated low density lipoprotein (HOG-LDL) induces pericyte apoptosis in vitro. In this study, we investigated the role of the mitogen-activated protein kinase (MAPK) signaling pathways in HOG-LDL-induced apoptosis in human pericytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidized and/or glycated low-density lipoprotein (LDL) may mediate capillary injury in diabetic retinopathy. The mechanisms may involve pro-inflammatory and pro-oxidant effects on retinal capillary pericytes. In this study, these effects, and the protective effects of pigment epithelium-derived factor (PEDF), were defined in a primary human pericyte model. Human retinal pericytes were exposed to 100 microg/ml native LDL (N-LDL) or heavily oxidized glycated LDL (HOG-LDL) with or without PEDF at 10-160 nM for 24 h. To assess pro-inflammatory effects, monocyte chemoattractant protein-1 (MCP-1) secretion was measured by ELISA, and nuclear factor-kappaB (NF-kappaB) activation was detected by immunocytochemistry. Oxidative stress was determined by measuring intracellular reactive oxygen species (ROS), peroxynitrite (ONOO(-)) formation, inducible nitric oxide synthase (iNOS) expression, and nitric oxide (NO) production. The results showed that MCP-1 was significantly increased by HOG-LDL, and the effect was attenuated by PEDF in a dose-dependent manner. PEDF also attenuated the HOG-LDL-induced NF-kappaB activation, suggesting that the inhibitory effect of PEDF on MCP-1 was at least partially through the blockade of NF-kappaB activation. Further studies demonstrated that HOG-LDL, but not N-LDL, significantly increased ONOO(-) formation, NO production, and iNOS expression. These changes were also alleviated by PEDF. Moreover, PEDF significantly ameliorated HOG-LDL-induced ROS generation through up-regulation of superoxide dismutase 1 expression. Taken together, these results demonstrate pro-inflammatory and pro-oxidant effects of HOG-LDL on retinal pericytes, which were effectively ameliorated by PEDF. Suppressing MCP-1 production and thus inhibiting macrophage recruitment may represent a new mechanism for the salutary effect of PEDF in diabetic retinopathy and warrants more studies in future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The pathogenesis of diabetic retinopathy (DR) is not fully understood. Clinical studies suggest that dyslipidemia is associated with the initiation and progression of DR. However, no direct evidence supports this theory.

Methods: Immunostaining of apolipoprotein B100 (ApoB100, a marker of low-density lipoprotein [LDL]), macrophages, and oxidized LDL was performed in retinal sections from four different groups of subjects: nondiabetic, type 2 diabetic without clinical retinopathy, diabetic with moderate nonproliferative diabetic retinopathy (NPDR), and diabetic with proliferative diabetic retinopathy (PDR). Apoptosis was characterized using the TUNEL assay. In addition, in cell culture studies using in vitro-modi?ed LDL, the induction of apoptosis by heavily oxidized-glycated LDL (HOG-LDL) in human retinal capillary
pericytes (HRCPs) was assessed.

Results: Intraretinal immuno?uorescence of ApoB100 increased with the severity of DR. Macrophages were prominent only in sections from diabetic patients with PDR. Merged images revealed that ApoB100 partially colocalized with macrophages. Intraretinal oxidized LDL was absent in nondiabetic subjects but present in all three diabetic groups, increasing with the severity of DR. TUNEL-positive cells were present in retinas from diabetic subjects but absent in those from nondiabetic subjects. In cell culture, HOG-LDL induced the activation of caspase, mitochondrial dysfunction, and apoptosis in
HRCPs.

Conclusions: These ?ndings suggest a potentially important role for extravasated, modi?ed LDL in promoting DR by promoting apoptotic pericyte loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims/hypothesis: Matrix metalloproteinases (MMPs) and their natural inhibitors, tissue inhibitor of metalloproteinases (TIMPs), regulate important biological processes including the homeostasis of the extracellular matrix, proteolysis of cell surface proteins, proteinase zymogen activation, angiogenesis and inflammation. Studies have shown that their balance is altered in retinal microvascular tissues in diabetes. Since LDLs modified by oxidation/glycation are implicated in the pathogenesis of diabetic vascular complications, we examined the effects of modified LDL on the gene expression and protein production of MMPs and TIMPs in retinal pericytes. Methods: Quiescent human retinal pericytes were exposed to native LDL (N-LDL), glycated LDL (G-LDL) and heavily oxidised and glycated LDL (HOG-LDL) for 24 h. We studied the expression of the genes encoding MMPs and TIMPs mRNAs by analysis of microarray data and quantitative PCR, and protein levels by immunoblotting and ELISA. Results: Microarray analysis showed that MMP1, MMP2, MMP11, MMP14 and MMP25 and TIMP1, TIMP2, TIMP3 and TIMP4 were expressed in pericytes. Of these, only TIMP3 mRNA showed altered regulation, being expressed at significantly lower levels in response to HOG- vs N-LDL. Quantitative PCR and immunoblotting of cell/matrix proteins confirmed the reduction in TIMP3 mRNA and protein in response to HOG-LDL. In contrast to cellular TIMP3 protein, analysis of secreted TIMP1, TIMP2, MMP1 and collagenase activity indicated no changes in their production in response to modified LDL. Combined treatment with N- and HOG-LDL restored TIMP3 mRNA expression to a level comparable with that after N-LDL alone. Conclusions/interpretation: Among the genes encoding for MMPs and TIMPs expressed in retinal pericytes, TIMP3 is uniquely regulated by HOG-LDL. Reduced TIMP3 expression might contribute to microvascular abnormalities in diabetic retinopathy. © 2007 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to a current paradigm cardiovascular diseases can be initiated by exposure of vascular cells to qualitatively modified low-density lipoproteins (LDL). Capillary leakage, an early feature of diabetic retinopathy, results in the exposure of retinal pericytes to modified LDL, including glycated (G-LDL) and heavily oxidized glycated LDL (HOG-LDL). We demonstrate here that modified LDL inhibits the proliferation and survival of cultured human retinal pericytes. Modified LDL also induced DNA fragmentation in bovine retinal pericytes. Overall, HOG-LDL produced a significantly higher extent of cytotoxicity and apoptosis in retinal pericytes. These results indicate that exposure of pericytes to HOG-LDL could be implicated in the development of diabetic retinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetes may induce both quantitative and qualitative changes in lipoproteins, especially low-density lipoprotein (LDL). Effects of LDL glycation on endothelial cell secretion of tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) have not been fully elucidated. Human aortic endothelial cell (HAEC) tPA and PAI-1 production were determined after incubation with LDL (50 to 500 microg/mL protein, 24 h) from three sources: (1) nondiabetic LDL (N-LDL) modified in vitro to form six preparations: native, nonmodified (N); glycated (G); minimally oxidized (MO); minimally oxidized and glycated (MOG); heavily oxidized (HO); and heavily oxidized and glycated (HOG); (2) in vivo glycated and relatively nonglycated LDL subfractions from type 1 diabetic patients; (3) LDL from type 1 diabetic patients and matched controls, which was subfractionated using density gradient ultracentrifugation. In experiments using LDL modified in vitro, the rate of tPA release by HAECs incubated with N-LDL (83 +/- 4 ng/mg cell protein/24 h) did not differ significantly from those incubated with G-LDL (73 +/- 7), MO-LDL (74 +/- 13), or MOG-LDL (66 +/- 15) and was not influenced by LDL concentration. The rate of PAI-1 release was similar in HAECs incubated with N-LDL (5.7 +/- 0.6 mug/mg cell protein/24 h), G-LDL (5.7 +/- 0.7), MO-LDL (5.5 +/- 0.8), or MOG-LDL (5.7 +/- 0.9) and was not influenced by LDL concentration. In contrast, tPA release was significantly decreased in cells incubated with LDL (10 microg/mL) modified extensively by oxidation, and averaged 45.2 +/- 5.0 and 43.7 +/- 9.9 ng/mg/24 h for HO-LDL and HOG-LDL, respectively, and was further decreased with increasing concentrations of the heavily oxidized LDL preparations. PAI-1 release was not significantly decreased relative to N-LDL in cells incubated with low concentrations (5 to 50 microg/mL) of HO-LDL and HOG-LDL, but was decreased to 3.2 +/- 0.5 and 3.1 +/- 0.7 microg/mg/24 h for HO-LDL and HOG-LDL at 200 microg/mL, respectively. Results using in vivo glycated versus nonglycated LDL showed that tPA and PAI-1 release did not differ between subfractions. Release of tPA averaged 5.11 +/- 0.6 and 5.12 +/- 0.7 ng/mg/24 h, whereas release of PAI-1 averaged 666 +/- 27 ng/mg/24 h and 705 +/- 30 ng/mg/24 h for nonglycated and glycated LDL subfractions, respectively. Using LDL of different density subclasses, tPA and PAI-1 release in response to LDL from diabetic patients compared with control subjects did not differ when HAECs were incubated with LDLs of increasing density isolated from each subject pair. We conclude that oxidation of LDL, but not glycation, may contribute to the altered fibrinolysis observed in diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidation and glycation of low-density lipoprotein (LDL) promote vascular injury in diabetes; however, the mechanisms underlying this effect remain poorly defined. The present study was conducted to determine the effects of 'heavily oxidized' glycated LDL (HOG-LDL) on endothelial nitric oxide synthase (eNOS) function. Exposure of bovine aortic endothelial cells with HOG-LDL reduced eNOS protein levels in a concentration- and time-dependent manner, without altering eNOS mRNA levels. Reduced eNOS protein levels were accompanied by an increase in intracellular Ca(2+), augmented production of reactive oxygen species (ROS) and induction of Ca(2+)-dependent calpain activity. Neither eNOS reduction nor any of these other effects were observed in cells exposed to native LDL. Reduction of intracellular Ca(2+) levels abolished eNOS reduction by HOG-LDL, as did pharmacological or genetic through calcium channel blockers or calcium chelator BAPTA or inhibition of NAD(P)H oxidase (with apocynin) or inhibition of calpain (calpain 1-specific siRNA). Consistent with these results, HOG-LDL impaired acetylcholine-induced endothelium-dependent vasorelaxation of isolated mouse aortas, and pharmacological inhibition of calpain prevented this effect. HOG-LDL may impair endothelial function by inducing calpain-mediated eNOS degradation in a ROS- and Ca(2+)-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Field Programmable Gate Array (FPGA) implementation of the commonly used Histogram of Oriented Gradients (HOG) algorithm is explored. The HOG algorithm is employed to extract features for object detection. A key focus has been to explore the use of a new FPGA-based processor which has been targeted at image processing. The paper gives details of the mapping and scheduling factors that influence the performance and the stages that were undertaken to allow the algorithm to be deployed on FPGA hardware, whilst taking into account the specific IPPro architecture features. We show that multi-core IPPro performance can exceed that of against state-of-the-art FPGA designs by up to 3.2 times with reduced design and implementation effort and increased flexibility all on a low cost, Zynq programmable system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manganese (Mn) is an essential nutrient required for plant growth, in particular in the process of photosynthesis. Plant performance is influenced by various environmental stresses including contrasting temperatures, light or nutrient deficiencies. The molecular responses of plants exposed to such stress factors in combination are largely unknown. 

Screening of 108 Arabidopsis thaliana (Arabidopsis) accessions for reduced photosynthetic performance at chilling temperatures was performed and one accession (Hog) was isolated. Using genetic and molecular approaches, the molecular basis of this particular response to temperature (GxE interaction) was identified. 

Hog showed an induction of a severe leaf chlorosis and impaired growth after transfer to lower temperatures. We demonstrated that this response was dependent on the nutrient content of the soil. Genetic mapping and complementation identified NRAMP1 as the causal gene. Chlorotic phenotype was associated with a histidine to tyrosine (H239Y) substitution in the allele of Hog NRAMP1. This led to lethality when Hog seedlings were directly grown at 4 degrees C. 

Chemical complementation and hydroponic culture experiments showed that Mn deficiency was the major cause of this GxE interaction. For the first time, the NRAMP-specific highly conserved histidine was shown to be crucial for plant performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Farming of salmon has become a significant industry in many countries over the past two decades. A major challenge facing this sector is infestation of the salmon by sea lice. The main way of treating salmon for such infestations is the use of medicines such as organophosphates, pyrethrins, hydrogen peroxide or benzoylphenyl ureas. The use of these medicines in fish farms is, however, highly regulated due to concerns about contamination of the wider marine environment. In this paper we report the use of photochemically active biocides for the treatment of a marine copepod, which is a model of parasitic sea lice. Photochemical activation and subsequent photodegradation of PDAs may represent a controllable and environmentally benign option for control of these parasites or other pest organisms in aquaculture. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims/hypothesis: We aimed to determine whether plasma lipoproteins, after leakage into the retina and modification by glycation and oxidation, contribute to the development of diabetic retinopathy in a mouse model of type 1 diabetes.

Methods: To simulate permeation of plasma lipoproteins intoretinal tissues, streptozotocin-induced mouse models of diabetes and non-diabetic mice were challenged with intravitreal injection of human ‘highly-oxidised glycated’ low-density lipoprotein (HOG-LDL), native- (N-) LDL, or the vehicle PBS.Retinal histology, electroretinography (ERG) and biochemical markers were assessed over the subsequent 14 days.

Results: Intravitreal administration of N-LDL and PBS had noeffect on retinal structure or function in either diabetic or non-diabetic animals. In non-diabetic mice, HOG-LDL elicited a transient inflammatory response without altering retinal function,but in diabetic mice it caused severe, progressive retinal injury, with abnormal morphology, ERG changes, vascular leakage, vascular endothelial growth factor overexpression, gliosis, endoplasmic reticulum stress, and propensity to apoptosis.

Conclusions/interpretation: Diabetes confers susceptibility to retinal injury imposed by intravitreal injection of modified LDL. The data add to the existing evidence that extravasated, modified plasma lipoproteins contribute to the propagation of diabetic retinopathy. Intravitreal delivery of HOG-LDL simulates a stress known to be present, in addition to hyperglycaemia, in human diabetic retinopathy once blood retinal barriers are compromised.