613 resultados para Histogram quotient
Resumo:
The effect of a change of tillage and crop residue management practice on the chemical and micro-biological properties of a cereal-producing red duplex soil was investigated by superimposing each of three management practices (CC: conventional cultivation, stubble burnt, crop conventionally sown; DD: direct-drilling, stubble retained, no cultivation, crop direct-drilled; SI: stubble incorporated with a single cultivation, crop conventionally sown), for a 3-year period on plots previously managed with each of the same three practices for 14 years. A change from DD to CC or SI practice resulted in a significant decline, in the top 0-5 cm of soil, in organic C, total N, electrical conductivity, NH4-N, NO3-N, soil moisture holding capacity, microbial biomass and CO2 respiration as well as a decline in the microbial quotient (the ratio of microbial biomass C to organic C; P <0.05). In contrast, a change from SI to DD or CC practice or a change from CC to DD or SI practice had only negligible impact on soil chemical properties (P >0.05). However, there was a significant increase in microbial biomass and the microbial quotient in the top 0-5 cm of soil following the change from CC to DD or SI practice and with the change from SI to DD practice (P <0.05). Analysis of ester-linked fatty acid methyl esters (EL-FAMEs) extracted from the 0- to 5-cm and 5- to 10-cm layers of the soils of the various treatments detected changes in the FAME profiles following a change in tillage practice. A change from DD practice to SI or CC practice was associated with a significant decline in the ratio of fungal to bacterial fatty acids in the 0- to 5-cm soil (P <0.05). The results show that a change in tillage practice, particularly the cultivation of a previously minimum-tilled (direct-drilled) soil, will result in significant changes in soil chemical and microbiological properties within a 3-year period. They also show that soil microbiological properties are sensitive indicators of a change in tillage practice.
Resumo:
Fatty acid methyl ester (FAME) profiles, together with Biolog substrate utilization patterns, were used in conjunction with measurements of other soil chemical and microbiological properties to describe differences in soil microbial communities induced by increased salinity and alkalinity in grass/legume pastures at three sites in SE South Australia. Total ester-linked FAMEs (EL-FAMEs) and phospholipid-linked FAMEs (PL-FAMEs), were also compared for their ability to detect differences between the soil microbial communities. The level of salinity and alkalinity in affected areas of the pastures showed seasonal variation, being greater in summer than in winter. At the time of sampling for the chemical and microbiological measurements (winter) only the affected soil at site 1 was significantly saline. The affected soils at all three sites had lower organic C and total N concentrations than the corresponding non-affected soils. At site 1 microbial biomass, CO 2-C respiration and the rate of cellulose decomposition was also lower in the affected soil compared to the non-affected soil. Biomarker fatty acids present in both the EL- and PL-FAME profiles indicated a lower ratio of fungal to bacterial fatty acids in the saline affected soil at site 1. Analysis of Biolog substrate utilization patterns indicated that the bacterial community in the affected soil at site 1 utilized fewer carbon substrates and had lower functional diversity than the corresponding community in the non-affected soil. In contrast, increased alkalinity, of major importance at sites 2 and 3, had no effect on microbial biomass, the rate of cellulose decomposition or functional diversity but was associated with significant differences in the relative amounts of several fatty acids in the PL-FAME profiles indicative of a shift towards a bacterial dominated community. Despite differences in the number and relative amounts of fatty acids detected, principal component analysis of the EL- and PL-FAME profiles were equally capable of separating the affected and non-affected soils at all three sites. Redundancy analysis of the FAME data showed that organic C, microbial biomass, electrical conductivity and bicarbonate-extractable P were significantly correlated with variation in the EL-FAME profiles, whereas pH, electrical conductivity, NH 4-N, CO 2-C respiration and the microbial quotient were significantly correlated with variation in the PL-FAME profiles. Redundancy analysis of the Biolog data indicated that cation exchange capacity and bicarbonate-extractable K were significantly correlated with the variation in Biolog substrate utilization patterns.
Resumo:
We propose a method of representing audience behavior through facial and body motions from a single video stream, and use these features to predict the rating for feature-length movies. This is a very challenging problem as: i) the movie viewing environment is dark and contains views of people at different scales and viewpoints; ii) the duration of feature-length movies is long (80-120 mins) so tracking people uninterrupted for this length of time is still an unsolved problem, and; iii) expressions and motions of audience members are subtle, short and sparse making labeling of activities unreliable. To circumvent these issues, we use an infrared illuminated test-bed to obtain a visually uniform input. We then utilize motion-history features which capture the subtle movements of a person within a pre-defined volume, and then form a group representation of the audience by a histogram of pair-wise correlations over a small-window of time. Using this group representation, we learn our movie rating classifier from crowd-sourced ratings collected by rottentomatoes.com and show our prediction capability on audiences from 30 movies across 250 subjects (> 50 hrs).
Resumo:
Existing crowd counting algorithms rely on holistic, local or histogram based features to capture crowd properties. Regression is then employed to estimate the crowd size. Insufficient testing across multiple datasets has made it difficult to compare and contrast different methodologies. This paper presents an evaluation across multiple datasets to compare holistic, local and histogram based methods, and to compare various image features and regression models. A K-fold cross validation protocol is followed to evaluate the performance across five public datasets: UCSD, PETS 2009, Fudan, Mall and Grand Central datasets. Image features are categorised into five types: size, shape, edges, keypoints and textures. The regression models evaluated are: Gaussian process regression (GPR), linear regression, K nearest neighbours (KNN) and neural networks (NN). The results demonstrate that local features outperform equivalent holistic and histogram based features; optimal performance is observed using all image features except for textures; and that GPR outperforms linear, KNN and NN regression
Resumo:
Due to the popularity of security cameras in public places, it is of interest to design an intelligent system that can efficiently detect events automatically. This paper proposes a novel algorithm for multi-person event detection. To ensure greater than real-time performance, features are extracted directly from compressed MPEG video. A novel histogram-based feature descriptor that captures the angles between extracted particle trajectories is proposed, which allows us to capture motion patterns of multi-person events in the video. To alleviate the need for fine-grained annotation, we propose the use of Labelled Latent Dirichlet Allocation, a “weakly supervised” method that allows the use of coarse temporal annotations which are much simpler to obtain. This novel system is able to run at approximately ten times real-time, while preserving state-of-theart detection performance for multi-person events on a 100-hour real-world surveillance dataset (TRECVid SED).
Resumo:
Abnormal event detection has attracted a lot of attention in the computer vision research community during recent years due to the increased focus on automated surveillance systems to improve security in public places. Due to the scarcity of training data and the definition of an abnormality being dependent on context, abnormal event detection is generally formulated as a data-driven approach where activities are modeled in an unsupervised fashion during the training phase. In this work, we use a Gaussian mixture model (GMM) to cluster the activities during the training phase, and propose a Gaussian mixture model based Markov random field (GMM-MRF) to estimate the likelihood scores of new videos in the testing phase. Further-more, we propose two new features: optical acceleration, and the histogram of optical flow gradients; to detect the presence of any abnormal objects and speed violations in the scene. We show that our proposed method outperforms other state of the art abnormal event detection algorithms on publicly available UCSD dataset.
Resumo:
We propose expected attainable discrimination (EAD) as a measure to select discrete valued features for reliable discrimination between two classes of data. EAD is an average of the area under the ROC curves obtained when a simple histogram probability density model is trained and tested on many random partitions of a data set. EAD can be incorporated into various stepwise search methods to determine promising subsets of features, particularly when misclassification costs are difficult or impossible to specify. Experimental application to the problem of risk prediction in pregnancy is described.
Resumo:
Local spatio-temporal features with a Bag-of-visual words model is a popular approach used in human action recognition. Bag-of-features methods suffer from several challenges such as extracting appropriate appearance and motion features from videos, converting extracted features appropriate for classification and designing a suitable classification framework. In this paper we address the problem of efficiently representing the extracted features for classification to improve the overall performance. We introduce two generative supervised topic models, maximum entropy discrimination LDA (MedLDA) and class- specific simplex LDA (css-LDA), to encode the raw features suitable for discriminative SVM based classification. Unsupervised LDA models disconnect topic discovery from the classification task, hence yield poor results compared to the baseline Bag-of-words framework. On the other hand supervised LDA techniques learn the topic structure by considering the class labels and improve the recognition accuracy significantly. MedLDA maximizes likelihood and within class margins using max-margin techniques and yields a sparse highly discriminative topic structure; while in css-LDA separate class specific topics are learned instead of common set of topics across the entire dataset. In our representation first topics are learned and then each video is represented as a topic proportion vector, i.e. it can be comparable to a histogram of topics. Finally SVM classification is done on the learned topic proportion vector. We demonstrate the efficiency of the above two representation techniques through the experiments carried out in two popular datasets. Experimental results demonstrate significantly improved performance compared to the baseline Bag-of-features framework which uses kmeans to construct histogram of words from the feature vectors.
Resumo:
We developed an analysis pipeline enabling population studies of HARDI data, and applied it to map genetic influences on fiber architecture in 90 twin subjects. We applied tensor-driven 3D fluid registration to HARDI, resampling the spherical fiber orientation distribution functions (ODFs) in appropriate Riemannian manifolds, after ODF regularization and sharpening. Fitting structural equation models (SEM) from quantitative genetics, we evaluated genetic influences on the Jensen-Shannon divergence (JSD), a novel measure of fiber spatial coherence, and on the generalized fiber anisotropy (GFA) a measure of fiber integrity. With random-effects regression, we mapped regions where diffusion profiles were highly correlated with subjects' intelligence quotient (IQ). Fiber complexity was predominantly under genetic control, and higher in more highly anisotropic regions; the proportion of genetic versus environmental control varied spatially. Our methods show promise for discovering genes affecting fiber connectivity in the brain.
Resumo:
A major challenge in neuroscience is finding which genes affect brain integrity, connectivity, and intellectual function. Discovering influential genes holds vast promise for neuroscience, but typical genome-wide searches assess approximately one million genetic variants one-by-one, leading to intractable false positive rates, even with vast samples of subjects. Even more intractable is the question of which genes interact and how they work together to affect brain connectivity. Here, we report a novel approach that discovers which genes contribute to brain wiring and fiber integrity at all pairs of points in a brain scan. We studied genetic correlations between thousands of points in human brain images from 472 twins and their nontwin siblings (mean age: 23.7 2.1 SD years; 193 male/279 female).Wecombined clustering with genome-wide scanning to find brain systems withcommongenetic determination.Wethen filtered the image in a new way to boost power to find causal genes. Using network analysis, we found a network of genes that affect brain wiring in healthy young adults. Our new strategy makes it computationally more tractable to discover genes that affect brain integrity. The gene network showed small-world and scale-free topologies, suggesting efficiency in genetic interactions and resilience to network disruption. Genetic variants at hubs of the network influence intellectual performance by modulating associations between performance intelligence quotient and the integrity of major white matter tracts, such as the callosal genu and splenium, cingulum, optic radiations, and the superior longitudinal fasciculus.
Resumo:
White matter microstructure is under strong genetic control, yet it is largely unknown how genetic influences change from childhood into adulthood. In one of the largest brain mapping studies ever performed, we determined whether the genetic control over white matter architecture depends on age, sex, socioeconomic status (SES), and intelligence quotient (IQ). We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4-Tesla), in 705 twins and their siblings (age range 12-29; 290. M/415. F). White matter integrity was quantified using a widely accepted measure, fractional anisotropy (FA). We fitted gene-environment interaction models pointwise, to visualize brain regions where age, sex, SES and IQ modulate heritability of fiber integrity. We hypothesized that environmental factors would start to outweigh genetic factors during late childhood and adolescence. Genetic influences were greater in adolescence versus adulthood, and greater in males than in females. Socioeconomic status significantly interacted with genes that affect fiber integrity: heritability was higher in those with higher SES. In people with above-average IQ, genetic factors explained over 80% of the observed FA variability in the thalamus, genu, posterior internal capsule, and superior corona radiata. In those with below-average IQ, however, only around 40% FA variability in the same regions was attributable to genetic factors. Genes affect fiber integrity, but their effects vary with age, sex, SES and IQ. Gene-environment interactions are vital to consider in the search for specific genetic polymorphisms that affect brain integrity and connectivity.
Resumo:
We analyzed brain MRI data from 372 young adult twins toidentify cortical regions in which gray matter thickness and volume are influenced by genetics. This was achieved using an A/C/E structural equation model that divides the variance of these traits, at each point on the cortex, into additive genetic (A), shared (C), and unique environmental (E) components. A strong genetic influencewas found in frontal and parietal regions. Inaddition, we correlated cortical thickness with full-scale intelligence quotient for comparison with the A/C/E maps, and several regions where cortical structure was correlated with intelligence quotient are under genetic control. These cortical measures may be useful phenotypes to narrow the searchfor quantitative trait lociinfluencing brain structure.
Resumo:
Automated digital recordings are useful for large-scale temporal and spatial environmental monitoring. An important research effort has been the automated classification of calling bird species. In this paper we examine a related task, retrieval of birdcalls from a database of audio recordings, similar to a user supplied query call. Such a retrieval task can sometimes be more useful than an automated classifier. We compare three approaches to similarity-based birdcall retrieval using spectral ridge features and two kinds of gradient features, structure tensor and the histogram of oriented gradients. The retrieval accuracy of our spectral ridge method is 94% compared to 82% for the structure tensor method and 90% for the histogram of gradients method. Additionally, this approach potentially offers a more compact representation and is more computationally efficient.
Resumo:
Bioacoustic monitoring has become a significant research topic for species diversity conservation. Due to the development of sensing techniques, acoustic sensors are widely deployed in the field to record animal sounds over a large spatial and temporal scale. With large volumes of collected audio data, it is essential to develop semi-automatic or automatic techniques to analyse the data. This can help ecologists make decisions on how to protect and promote the species diversity. This paper presents generic features to characterize a range of bird species for vocalisation retrieval. In the implementation, audio recordings are first converted to spectrograms using short-time Fourier transform, then a ridge detection method is applied to the spectrogram for detecting points of interest. Based on the detected points, a new region representation are explored for describing various bird vocalisations and a local descriptor including temporal entropy, frequency bin entropy and histogram of counts of four ridge directions is calculated for each sub-region. To speed up the retrieval process, indexing is carried out and the retrieved results are ranked according to similarity scores. The experiment results show that our proposed feature set can achieve 0.71 in term of retrieval success rate which outperforms spectral ridge features alone (0.55) and Mel frequency cepstral coefficients (0.36).
Resumo:
Background: Better understanding of body composition and energy metabolism in pediatric liver disease may provide a scientific basis for improved medical therapy aimed at achieving optimal nutrition, slowing progression to end-stage liver disease (ESLD), and improving the outcome of liver transplantation. Methods: Twenty-one children less than 2 years of age with ESLD awaiting liver transplantation and 15 healthy, aged-matched controls had body compartment analysis using a four compartment model (body cell mass, fat mass, extracellular water, and extracellular solids). Subjects also had measurements of resting energy expenditure (REE) and respiratory quotient (RQ) by indirect calorimetry. Nine patients and 15 control subjects also had measurements of total energy expenditure (TEE) using doubly labelled water. Results: Mean weights and heights were similar in the two groups. Compared with control subjects, children with ESLD had higher relative mean body cell mass (33 ± 2% vs 29 ± 1% of body weight, P < 0.05), but had similar fat mass, extracellular water, and extracellular solid compartments (18% vs 20%, 41% vs 38%, and 7% vs 13% of body weight respectively). Compared with control subjects, children with ESLD had 27% higher mean REE/body weight (0.285 ± 0.013 vs 0.218. ± 0.013 mJ/kg/24h, P < 0.001), 16% higher REE/unit cell mass (P < 0.05); and lower mean RQ (P < 0.05). Mean TEE of patients was 4.70 ± 0.49 mJ/24h vs 3.19 ± 0.76 in controls, (P < 0.01). Conclusions: In children, ESLD is a hypermetabolic state adversely affecting the relationship between metabolic and non-metabolic body compartments. There is increased metabolic activity within the body cell mass with excess lipid oxidation during fasting and at rest. These findings have implications for the design of appropriate nutritional therapy.