914 resultados para High intensity discharge lamps


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has recently been shown that food intake is not essential for the resynthesis of the stores of muscle glycogen in fasted animals recovering from high-intensity exercise. Because the effect of diabetes on this process has never been examined before, we undertook to explore this issue. To this end, groups of rats were treated with streptozotocin (60 mg/kg body mass ip) to induce mild diabetes. After 11 days, each animal was fasted for 24 h before swimming with a lead weight equivalent to 9% body mass attached to the tail. After exercise, the rate and the extent of glycogen repletion in muscles were not affected by diabetes, irrespective of muscle fiber composition. Consistent with these findings, the effect of exercise on the phosphorylation state of glycogen synthase in muscles was only minimally affected by diabetes. In contrast to its effects on nondiabetic animals, exercise in fasted diabetic rats was accompanied by a marked fall in hepatic glycogen levels, which, surprisingly, increased to preexercise levels during recovery despite the absence of food intake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mild physical activity performed immediately after a bout of intense exercise in fasting humans results in net glycogen breakdown in their slow oxidative (SO) muscle fibers and glycogen repletion in their fast twitch (FT) fibers. Because several animal species carry a low proportion of SO fibers, it is unclear whether they can also replenish glycogen in their FT fibers under these conditions. Given that most skeletal muscles in rats are poor in SO fibers (<5%), this issue was examined using groups of 24-h fasted Wistar rats (n = 10) that swam for 3 min at high intensity with a 10% weight followed by either a 60-min rest (passive recovery, PR) or a 30-min swim with a 0.5% weight (active recovery, AR) preceding a 30-min rest. The 3-min sprint caused 61–79% glycogen fall across the muscles examined, but not in the soleus (SOL). Glycogen repletion during AR without food was similar to PR in the white gastrocnemius (WG), where glycogen increased by 71%, and less than PR in both the red and mixed gastrocnemius (RG, MG). Glycogen fell by 26% during AR in the SOL. Following AR, glycogen increased by 36%, 87%, and 37% in the SOL, RG, and MG, respectively, and this was accompanied by the sustained activation of glycogen synthase and inhibition of glycogen phosphorylase in the RG and MG. These results suggest that mammals with a low proportion of SO fibers can also replenish the glycogen stores of their FT fibers under extreme conditions combining physical activity and fasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the role of the phosphorylation state of glycogen synthase and glycogen phosphorylase in the regulation of muscle glycogen repletion in fasted animals recovering from high-intensity exercise. Groups of rats were swum to exhaustion and allowed to recover for up to 120 min without access to food. Swimming to exhaustion caused substantial glycogen breakdown and lactate accumulation in the red, white and mixed gastrocnemius muscles, whereas the glycogen content in the soleus muscle remained stable. During the first 40 min of recovery, significant repletion of glycogen occurred in all muscles examined except the soleus muscle. At the onset of recovery, the activity ratios and fractional velocities of glycogen synthase in the red, white and mixed gastrocnemius muscles were higher than basal, but returned to pre-exercise levels within 20 min after exercise. In contrast, after exercise the activity ratios of glycogen phosphorylase in the same muscles were lower than basal, and increased to pre-exercise levels within 20 min. This pattern of changes in glycogen synthase and phosphorylase activities, never reported before, suggests that the integrated regulation of the phosphorylation state of both glycogen synthase and phosphorylase might be involved in the control of glycogen deposition after high-intensity exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Even in the absence of food intake, several animal species recovering from physical activity of high intensity can replenish completely their muscle glycogen stores. In some species of mammals, such as in rats and humans, glycogen repletion is only partial, thus suggesting that a few consecutive bouts of high-intensity exercise might eventually lead to the sustained depletion of their muscle glycogen. In order to test this prediction, groups of rats with a lead weight of 10% body mass attached to their tails were subjected to either one, two or three bouts of high-intensity swimming, each bout being separated from the next by a 1 h recovery period. Although glycogen repletion after the first bout of exercise was only partial, all the glycogen mobilised in subsequent bouts was completely replenished during the corresponding recovery periods and irrespective of muscle fibre compositions. The impact of repeated bouts of high-intensity exercise on plasma levels of fatty acids, acetoacetate and β-hydroxybutyrate suggests that the metabolic state of the rat prior to the second and third bouts of exercise was different from that before the first bout. In conclusion, rats resemble other vertebrate species in that without food intake there are conditions under which they can replenish completely their muscle glycogen stores from endogenous carbon sources when recovering from high-intensity exercise. It remains to be established, however, whether this capacity is typical of mammals in general.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light-intensity physical activity (LIPA) accounts for much of adults' waking hours (≈40%) and substantially contributes to overall daily energy expenditure. Encompassing activity behaviours of low intensity (standing with little movement) through to those with a higher intensity (slow walking), LIPA is ubiquitous, yet little is known about how associations with health may vary depending on its intensity. We examined the associations of objectively assessed LIPA, categorized as either low- or high- LIPA, and MVPA, with cardiometabolic risk biomarkers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: High-intensity short-duration interval training (HIT) stimulates functional and metabolic adaptation in skeletal muscle, but the influence of HIT on mitochondrial function remains poorly studied in humans. Mitochondrial metabolism as well as mitochondrial-associated protein expression were tested in untrained participants performing HIT over a 2-week period. METHODS: Eight males performed a single-leg cycling protocol (12 × 1 min intervals at 120% peak power output, 90 s recovery, 4 days/week). Muscle biopsies (vastus lateralis) were taken pre- and post-HIT. Mitochondrial respiration in permeabilized fibers, citrate synthase (CS) activity and protein expression of peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and respiratory complex components were measured. RESULTS: HIT training improved peak power and time to fatigue. Increases in absolute oxidative phosphorylation (OXPHOS) capacities and CS activity were observed, but not in the ratio of CCO to the electron transport system (CCO/ETS), the respiratory control ratios (RCR-1 and RCR-2) or mitochondrial-associated protein expression. Specific increases in OXPHOS flux were not apparent after normalization to CS, indicating that gross changes mainly resulted from increased mitochondrial mass. CONCLUSION: Over only 2 weeks HIT significantly increased mitochondrial function in skeletal muscle independently of detectable changes in mitochondrial-associated and mitogenic protein expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-intensity interval exercise (HIIE) has gained popularity in recent years for patients with cardiovascular and metabolic diseases. Despite potential benefits, concerns remain about the safety of the acute response (during and/or within 24 hours postexercise) to a single session of HIIE for these cohorts. Therefore, the aim of this study was to perform a systematic review to evaluate the safety of acute HIIE for people with cardiometabolic diseases. Electronic databases were searched for studies published prior to January 2015, which reported the acute responses of patients with cardiometabolic diseases to HIIE (≥80% peak power output or ≥85% peak aerobic power, VO2peak). Eleven studies met the inclusion criteria (n = 156; clinically stable, aged 27-66 years), with 13 adverse responses reported (∼8% of individuals). The rate of adverse responses is somewhat higher compared to the previously reported risk during moderate-intensity exercise. Caution must be taken when prescribing HIIE to patients with cardiometabolic disease. Patients who wish to perform HIIE should be clinically stable, have had recent exposure to at least regular moderate-intensity exercise, and have appropriate supervision and monitoring during and after the exercise session.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Within a controlled laboratory environment, high-intensity interval training (HIT) elicits similar cardiovascular and metabolic benefits as traditional moderate-intensity continuous training (MICT). It is currently unclear how HIT can be applied effectively in a real-world environment. Purpose To investigate the hypothesis that 10 weeks of HIT, performed in an instructor-led, groupbased gym setting, elicits improvements in aerobic capacity (VO2max), cardio-metabolic risk and psychological health which are comparable to MICT. Methods Ninety physically inactive volunteers (42±11 y, 27.7±4.8 kg.m-2) were randomly assigned to HIT or MICT group exercise classes. HIT consisted of repeated sprints (15-60 seconds, >90% HRmax) interspersed with periods of recovery cycling (≥25 min.session-1, 3 sessions. week-1). MICT participants performed continuous cycling (70%HRmax, 30-45 min.session-1, 5 sessions.week-1). VO2max, markers of cardio-metabolic risk, and psychological health were assessed pre and post-intervention. Results Mean weekly training time was 55±10 (HIT) and 128±44 min (MICT) (p<0.05), with greater adherence to HIT (83±14% vs. 61±15% prescribed sessions attended, respectively; p<0.05). HIT improved VO2max, insulin sensitivity, reduced abdominal fat mass, and induced favourable changes in blood lipids (p<0.05). HIT also induced beneficial effects on health perceptions, positive and negative affect, and subjective vitality (p<0.05). No difference between HIT and MICT was seen for any of these variables. Conclusions HIT performed in a real-world gym setting improves cardio-metabolic risk factors and psychological health in physically inactive adults. With a reduced time commitment and greater adherence than MICT, HIT offers a viable and effective exercise strategy to target the growing incidence of metabolic disease and psychological ill-being associated with physical inactivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to identify the validity of an upper-body mounted accelerometer to measure peak acceleration during high-intensity treadmill running. A twelve camera motion analysis (MA) system was used as the criterion measure with markers placed on and close to the accelerometer. Ten peak impacts per participant were compared (n = 390). All accelerometer values were significantly different between the MA unit and T6 reflective marker’s acceleration data. Smoothing accelerometer data at 8 and 6 Hz provides an acceptable indirect measure of peak impact acceleration performed during high-intensity running. Consequently, smoothing algorithms should be incorporated into the commercially available software that the devices are supplied with.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the potential relationship between excess post-exercise oxygen consumption (EPOC), heart rate recovery (HRR) and their respective time constants (tvo(2) and t(HR)) and body composition and aerobic fitness (VO(2)max) variables after an anaerobic effort. 14 professional cyclists (age = 28.4 +/- 4.8 years, height = 176.0 +/- 6.7 cm, body mass = 74.4 +/- 8.1 kg, VO(2)max = 66.8 +/- 7.6 mL. kg(-1) . min(-1)) were recruited. Each athlete made 3 visits to the laboratory with 24h between each visit. During the first visit, a total and segmental body composition assessment was carried out. During the second, the athletes undertook an incremental test to determine VO(2)max. In the final visit, EPOC (15-min) and HRR were measured after an all-out 30s Wingate test. The results showed that EPOC is positively associated with % body fat (r = 0.64), total body fat (r = 0.73), fat-free mass (r = 0.61) and lower limb fat-free mass (r = 0.55) and negatively associated with HRR (r = - 0.53, p < 0.05 for all). HRR had a significant negative correlation with total body fat and % body fat (r = - 0.62, r = - 0.56 respectively, p < 0.05 for all). These findings indicate that VO(2)max does not influence HRR or EPOC after high-intensity exercise. Even in short-term exercise, the major metabolic disturbance due to higher muscle mass and total muscle mass may increase EPOC. However, body fat impedes HRR and delays recovery of oxygen consumption after effort in highly trained athletes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)