983 resultados para High Mounted Stop Lamps.
Resumo:
"DE84005862"--Label mounted on cover.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
BACKGROUND: "One-stop" outpatient hysteroscopy clinics have become well established for the investigation and treatment of women with abnormal uterine bleeding. However, the advantages of these clinics may be offset by patient factors such as anxiety, pain, and dissatisfaction. This study aimed to establish patients' views and experiences of outpatient service delivery in the context of a one-stop diagnostic and therapeutic hysteroscopy clinic, to determine the amount of anxiety experienced by these women and compare this with other settings, and to determine any predictors for patient preferences. METHODS: The 20-item State-Trait Anxiety Inventory was given to 240 women attending a one-stop hysteroscopy clinic: to 73 consecutive women before their appointment in a general gynecology clinic and to 36 consecutive women attending a chronic pelvic pain clinic. The results were compared with published data for the normal female population, for women awaiting major surgery, and for women awaiting a colposcopy clinic appointment. In addition, a questionnaire designed to ascertain patients' views and experiences was used. Logistic regression analysis was used to delineate the predictive values of diagnostic or therapeutic hysteroscopy, and to determine their effect on the preference of patients to have the procedure performed under general anesthesia in the future. RESULTS: Women attending the hysteroscopy clinic in this study reported significantly higher levels of anxiety than those attending the general gynecology clinic (median, 45 vs 39; p = 0.004), but the levels of anxiety were comparable with those of women attending the chronic pelvic pain clinic (median, 45 vs 46; p = 0.8). As compared with the data from the normal female population (mean, 35.7) and those reported for women awaiting major surgery (mean, 41.2), the levels of anxiety experienced before outpatient hysteroscopy clinic treatment were found to be higher (mean, 45.7). Only women awaiting colposcopy (6-item mean score, 51.1 +/- 13.3) experienced significantly higher anxiety scores than the women awaiting outpatient hysteroscopy (6-item mean score, 47.3 +/- 13.9; p = 0.002). Despite their anxiety, most women are satisfied with the outpatient hysteroscopy "see and treat" service. High levels of anxiety, particularly concerning pain but not operative intervention, were significant predictors of patients desiring a future procedure to be performed under general anesthesia. CONCLUSIONS: Outpatient hysteroscopy is associated with significant anxiety, which increases the likelihood of intolerance for the outpatient procedure. However, among those undergoing operative therapeutic procedures, dissatisfaction was not associated with the outpatient setting.
Resumo:
The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.
Resumo:
The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.
Resumo:
Internal quantum efficiency (IQE) of a high-brightness blue LED has been evaluated from the external quantum efficiency measured as a function of current at room temperature. Processing the data with a novel evaluation procedure based on the ABC-model, we have determined separately IQE of the LED structure and light extraction efficiency (LEE) of UX:3 chip. Full text Nowadays, understanding of LED efficiency behavior at high currents is quite critical to find ways for further improvement of III-nitride LED performance [1]. External quantum efficiency ηe (EQE) provides integral information on the recombination and photon emission processes in LEDs. Meanwhile EQE is the product of IQE ηi and LEE ηext at negligible carrier leakage from the active region. Separate determination of IQE and LEE would be much more helpful, providing correlation between these parameters and specific epi-structure and chip design. In this paper, we extend the approach of [2,3] to the whole range of the current/optical power variation, providing an express tool for separate evaluation of IQE and LEE. We studied an InGaN-based LED fabricated by Osram OS. LED structure grown by MOCVD on sapphire substrate was processed as UX:3 chip and mounted into the Golden Dragon package without molding. EQE was measured with Labsphere CDS-600 spectrometer. Plotting EQE versus output power P and finding the power Pm corresponding to EQE maximum ηm enables comparing the measurements with the analytical relationships ηi = Q/(Q+p1/2+p-1/2) ,p = P/Pm , and Q = B/(AC) 1/2 where A, Band C are recombination constants [4]. As a result, maximum IQE value equal to QI(Q+2) can be found from the ratio ηm/ηe plotted as a function of p1/2 +p1-1/2 (see Fig.la) and then LEE calculated as ηext = ηm (Q+2)/Q . Experimental EQE as a function of normalized optical power p is shown in Fig. 1 b along with the analytical approximation based on the ABCmodel. The approximation fits perfectly the measurements in the range of the optical power (or operating current) variation by eight orders of magnitude. In conclusion, new express method for separate evaluation of IQE and LEE of III-nitride LEDs is suggested and applied to characterization of a high-brightness blue LED. With this method, we obtained LEE from the free chip surface to the air as 69.8% and IQE as 85.7% at the maximum and 65.2% at the operation current 350 rnA. [I] G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, "Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies," 1. AppL Phys., vol. 114, no. 7, pp. 071101, Aug., 2013. [2] C. van Opdorp and G. W. 't Hooft, "Method for determining effective non radiative lifetime and leakage losses in double-heterostructure lasers," 1. AppL Phys., vol. 52, no. 6, pp. 3827-3839, Feb., 1981. [3] M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, "A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes," 1. AppL Phys., vol. 106, no. II, pp. 114508, Dec., 2009. [4] Qi Dai, Qifeng Shan, ling Wang, S. Chhajed, laehee Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, Min-Ho Kim, and Yongjo Park, "Carrier recombination mechanisms and efficiency droop in GalnN/GaN light-emitting diodes," App/. Phys. Leu., vol. 97, no. 13, pp. 133507, Sept., 2010. © 2014 IEEE.
Resumo:
Within the context of the overall ecological working programme Dynamics of Antarctic Marine Shelf Ecosystems (DynAMo) of the PS96 (ANT-XXXI/2) cruise of RV "Polarstern" to the Weddell Sea (Dec 2015 to Feb 2016), seabed imaging surveys were carried out along drift profiles by means of the Ocean Floor Observation System (OFOS) of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) Bremerhaven. The setup and mode of deployment of the OFOS was similar to that described by Bergmann and Klages (2012, doi:10.1016/j.marpolbul.2012.09.018). OFOS is a surface-powered gear equipped with two downward-looking cameras installed side-by-side: one high-resolution, wide-angle still camera (CANON® EOS 5D Mark III; lens: Canon EF 24 f/1.4L II, f stop: 13, exposure time: 1/125 sec; in-air view angles: 74° (horizontal), 53° (vertical), 84° (diagonal); image size: 5760 x 3840 px = 21 MPix; front of pressure resistant camera housing consisting of plexiglass dome port) and one high-definition color video camera (SONY® FCB-H11). The system was vertically lowered over the stern of the ship with a broadband fibre-optic cable, until it hovers approximately 1.5 m above the seabed. It was then towed after the slowly sailing ship at a speed of approximately 0.5 kn (0.25 m/s). The ship's Global Acoustic Positioning System (GAPS), combining Ultra Short Base Line (USBL), Inertial Navigation System (INS) and satellite-based Global Positioning System (GPS) technologies, was used to gain highly precise underwater position data of the OFOS. During the profile, OFOS was kept hanging at the preferred height above the seafloor by means of the live video feed and occasional minor cable-length adjustments with the winch to compensate small-scale bathymetric variations in seabed morphology. Information on water depth and height above the seafloor were continuously recorded by means of OFOS-mounted sensors (GAPS transponder, Tritech altimeter). Three lasers, which are placed beside the still camera, emit parallel beams and project red light points, arranged as an equilateral triangle with a side length of 50 cm, in each photo, thus providing a scale that can be used to calculate the seabed area depicted in each image and/or measure the size of organisms or seabed features visible in the image. In addition, the seabed area depicted was estimated using altimeter-derived height above seafloor and optical characteristics of the OFOS still camera. In automatic mode, a seabed photo, depicting an area of approximately 3.45 m**2 (= 2.3 m x 1.5 m; with variations depending on the actual height above ground), was taken every 30 seconds to obtain series of "TIMER" stills distributed at regular distances along the profiles that vary in length depending on duration of the cast. At a ship speed of 0.5 kn, the average distance between seabed images was approximately 5 m. Additional "HOTKEY" photos were taken from interesting objects (organisms, seabed features, such as putative iceberg scours) when they appeared in the live video feed (which was also recorded, in addition to the stills, for documentation and possible later analysis). If any image from this collection is used, please cite the reference as given above.
Resumo:
It is well-documented that social networking sites such as Facebook set the stage for social comparison. Such comparison has been linked to a number of negative outcomes including envy, negative moods, and lower self-esteem. The present research aims to extend current understanding of online social comparison by investigating how it pertains to romantic relationships. I hypothesized that for individuals high in attachment anxiety (compared to those low in this construct), online romantic social comparison might be related to negative consequences—which, in the current project, was operationalized as lower mood/affect and state self-esteem. Further, I hypothesized that there would be an interaction between attachment anxiety and relationship insecurities on these negative outcomes, such that the expected difference of attachment anxiety would be more pronounced under conditions priming relationship insecurities, relative to a control condition. Two experiments were conducted, one of which focused on single individuals, and the second focusing on individuals who were themselves in dating relationships. The paradigms of each entailed experimental manipulation of a key relationship-related variable (for single individuals, pessimism for future relationships; for dating individuals, the presence or absence of rejection threat), subsequent exposure to romantic content from Facebook, and finally, measures of affect and state self-esteem. I discovered partial support for the hypothesis that some single individuals—particularly those with higher, rather than lower, attachment anxiety—do indeed report feeling more negative moods and lower state self-esteem following exposure to romantic online content, in contrast to single individuals who had instead viewed neutral online content. The association between attachment anxiety and negative outcome was especially pertinent if individuals had been primed to believe that their own future romantic prospects were grim, or if attention had been drawn to their singleness. Among dating individuals, less support for hypotheses was found; however, exploratory post-hoc analyses revealed a promising (albeit weak) trend indicating that reinvestigation of the current hypotheses would be prudent.
Resumo:
In geotechnical engineering, the stability of rock excavations and walls is estimated by using tools that include a map of the orientations of exposed rock faces. However, measuring these orientations by using conventional methods can be time consuming, sometimes dangerous, and is limited to regions of the exposed rock that are reachable by a human. This thesis introduces a 2D, simulated, quadcopter-based rock wall mapping algorithm for GPS denied environments such as underground mines or near high walls on surface. The proposed algorithm employs techniques from the field of robotics known as simultaneous localization and mapping (SLAM) and is a step towards 3D rock wall mapping. Not only are quadcopters agile, but they can hover. This is very useful for confined spaces such as underground or near rock walls. The quadcopter requires sensors to enable self localization and mapping in dark, confined and GPS denied environments. However, these sensors are limited by the quadcopter payload and power restrictions. Because of these restrictions, a light weight 2D laser scanner is proposed. As a first step towards a 3D mapping algorithm, this thesis proposes a simplified scenario in which a simulated 1D laser range finder and 2D IMU are mounted on a quadcopter that is moving on a plane. Because the 1D laser does not provide enough information to map the 2D world from a single measurement, many measurements are combined over the trajectory of the quadcopter. Least Squares Optimization (LSO) is used to optimize the estimated trajectory and rock face for all data collected over the length of a light. Simulation results show that the mapping algorithm developed is a good first step. It shows that by combining measurements over a trajectory, the scanned rock face can be estimated using a lower-dimensional range sensor. A swathing manoeuvre is introduced as a way to promote loop closures within a short time period, thus reducing accumulated error. Some suggestions on how to improve the algorithm are also provided.
Resumo:
AIMS: Prevention of cardiovascular disease and heart failure (HF) in a cost-effective manner is a public health goal. This work aims to assess the cost-effectiveness of the St Vincent's Screening TO Prevent Heart Failure (STOP-HF) intervention.
METHODS AND RESULTS: This is a substudy of 1054 participants with cardiovascular risk factors [median age 65.8 years, interquartile range (IQR) 57.8:72.4, with 4.3 years, IQR 3.4:5.2, follow-up]. Annual natriuretic peptide-based screening was performed, with collaborative cardiovascular care between specialist physicians and general practitioners provided to patients with BNP levels >50 pg/mL. Analysis of cost per case prevented and cost-effectiveness per quality-adjusted life year (QALY) gained was performed. The primary clinical endpoint of LV dysfunction (LVD) with or without HF was reduced in intervention patients [odds ratio (OR) 0.60; 95% confidence interval (CI) 0.38-0.94; P = 0.026]. There were 157 deaths and/or emergency hospitalizations for major adverse cardiac events (MACE) in the control group vs. 102 in the intervention group (OR 0.68; 95% CI 0.49-0.93; P = 0.01). The cost per case of LVD/HF prevented was €9683 (sensitivity range -€843 to €20 210), whereas the cost per MACE prevented was €3471 (sensitivity range -€302 to €7245). Cardiovascular hospitalization savings offset increased outpatient and primary care costs. The cost per QALY gain was €1104 and the intervention has an 88% probability of being cost-effective at a willingness to pay threshold of €30 000.
CONCLUSION: Among patients with cardiovascular risk factors, natriuretic peptide-based screening and collaborative care reduced LVD, HF, and MACE, and has a high probability of being cost-effective.
TRIAL REGISTRATION: NCT00921960.
Resumo:
Resonant tunnelling diode (RTD) is known to be the fastest electronics device that can be fabricated in compact form and operate at room temperature with potential oscillation frequency up to 2.5 THz. The RTD device consists of a narrow band gap quantum well layer sandwiched between two thin wide band gap barriers layers. It exhibits negative differential resistance (NDR) region in its current-voltage (I-V) characteristics which is utilised in making oscillators. Up to date, the main challenge is producing high output power at high frequencies in particular. Although oscillation frequencies of ~ 2 THz have been already reported, the output power is in the range of micro-Watts. This thesis describes the systematic work on the design, fabrication, and characterisation of RTD-based oscillators in microwave/millimetre-wave monolithic integrated circuits (MMIC) form that can produce high output power and high oscillation frequency at the same time. Different MMIC RTD oscillator topologies were designed, fabricated, and characterised in this project which include: single RTD oscillator which employs one RTD device, double RTDs oscillator which employs two RTD devices connected in parallel, and coupled RTD oscillators which combine the powers of two oscillators over a single load, based on mutual coupling and which can employ up to four RTD devices. All oscillators employed relatively large size RTD devices for high power operation. The main challenge was to realise high oscillation frequency (~ 300 GHz) in MMIC form with the employed large sized RTD devices. To achieve this aim, proper designs of passive structures that can provide small values of resonating inductances were essential. These resonating inductance structures included shorted coplanar wave guide (CPW) and shorted microstrip transmission lines of low characteristics impedances Zo. Shorted transmission line of lower Zo has lower inductance per unit length. Thus, the geometrical dimensions would be relatively large and facilitate fabrication by low cost photolithography. A series of oscillators with oscillation frequencies in the J-band (220 – 325 GHz) range and output powers from 0.2 – 1.1 mW have been achieved in this project, and all were fabricated using photolithography. Theoretical estimation showed that higher oscillation frequencies (> 1 THz) can be achieved with the proposed MMIC RTD oscillators design in this project using photolithography with expected high power operation. Besides MMIC RTD oscillators, reported planar antennas for RTD-based oscillators were critically reviewed and the main challenges in designing high performance integrated antennas on large dielectric constant substrates are discussed in this thesis. A novel antenna was designed, simulated, fabricated, and characterised in this project. It was a bow-tie antenna with a tuning stub that has very wide bandwidth across the J-band. The antenna was diced and mounted on a reflector ground plane to alleviate the effect of the large dielectric constant substrate (InP) and radiates upwards to the air-side direction. The antenna was also investigated for integration with the all types of oscillators realised in this project. One port and two port antennas were designed, simulated, fabricated, and characterised and showed the suitability of integration with the single/double oscillator layout and the coupled oscillator layout, respectively.
Resumo:
Covers Wisconsin Avenue north of R Street N.W., Georgetown, Washington D.C.
Resumo:
In many major cities, fixed route transit systems such as bus and rail serve millions of trips per day. These systems have people collect at common locations (the station or stop), and board at common times (for example according to a predetermined schedule or headway). By using common service locations and times, these modes can consolidate many trips that have similar origins and destinations or overlapping routes. However, the routes are not sensitive to changing travel patterns, and have no way of identifying which trips are going unserved, or are poorly served, by the existing routes. On the opposite end of the spectrum, personal modes of transportation, such as a private vehicle or taxi, offer service to and from the exact origin and destination of a rider, at close to exactly the time they desire to travel. Despite the apparent increased convenience to users, the presence of a large number of small vehicles results in a disorganized, and potentially congested road network during high demand periods. The focus of the research presented in this paper is to develop a system that possesses both the on-demand nature of a personal mode, with the efficiency of shared modes. In this system, users submit their request for travel, but are asked to make small compromises in their origin and destination location by walking to a nearby meeting point, as well as slightly modifying their time of travel, in order to accommodate other passengers. Because the origin and destination location of the request can be adjusted, this is a more general case of the Dial-a-Ride problem with time windows. The solution methodology uses a graph clustering algorithm coupled with a greedy insertion technique. A case study is presented using actual requests for taxi trips in Washington DC, and shows a significant decrease in the number of vehicles required to serve the demand.
Resumo:
The thermal decomposition of natural ammonium oxalate known as oxammite has been studied using a combination of high resolution thermogravimetry coupled to an evolved gas mass spectrometer and Raman spectroscopy coupled to a thermal stage. Three mass loss steps were found at 57, 175 and 188°C attributed to dehydration, ammonia evolution and carbon dioxide evolution respectively. Raman spectroscopy shows two bands at 3235 and 3030 cm-1 attributed to the OH stretching vibrations and three bands at 2995, 2900 and 2879 cm-1, attributed to the NH vibrational modes. The thermal degradation of oxammite may be followed by the loss of intensity of these bands. No intensity remains in the OH stretching bands at 100°C and the NH stretching bands show no intensity at 200°C. Multiple CO symmetric stretching bands are observed at 1473, 1454, 1447 and 1431cm-1, suggesting that the mineral oxammite is composed of a mixture of chemicals including ammonium oxalate dihydrate, ammonium oxalate monohydrate and anhydrous ammonium oxalate.