941 resultados para Hierarchical elliptical model
Resumo:
We compare Bayesian methodology utilizing free-ware BUGS (Bayesian Inference Using Gibbs Sampling) with the traditional structural equation modelling approach based on another free-ware package, Mx. Dichotomous and ordinal (three category) twin data were simulated according to different additive genetic and common environment models for phenotypic variation. Practical issues are discussed in using Gibbs sampling as implemented by BUGS to fit subject-specific Bayesian generalized linear models, where the components of variation may be estimated directly. The simulation study (based on 2000 twin pairs) indicated that there is a consistent advantage in using the Bayesian method to detect a correct model under certain specifications of additive genetics and common environmental effects. For binary data, both methods had difficulty in detecting the correct model when the additive genetic effect was low (between 10 and 20%) or of moderate range (between 20 and 40%). Furthermore, neither method could adequately detect a correct model that included a modest common environmental effect (20%) even when the additive genetic effect was large (50%). Power was significantly improved with ordinal data for most scenarios, except for the case of low heritability under a true ACE model. We illustrate and compare both methods using data from 1239 twin pairs over the age of 50 years, who were registered with the Australian National Health and Medical Research Council Twin Registry (ATR) and presented symptoms associated with osteoarthritis occurring in joints of the hand.
Resumo:
In microarray studies, the application of clustering techniques is often used to derive meaningful insights into the data. In the past, hierarchical methods have been the primary clustering tool employed to perform this task. The hierarchical algorithms have been mainly applied heuristically to these cluster analysis problems. Further, a major limitation of these methods is their inability to determine the number of clusters. Thus there is a need for a model-based approach to these. clustering problems. To this end, McLachlan et al. [7] developed a mixture model-based algorithm (EMMIX-GENE) for the clustering of tissue samples. To further investigate the EMMIX-GENE procedure as a model-based -approach, we present a case study involving the application of EMMIX-GENE to the breast cancer data as studied recently in van 't Veer et al. [10]. Our analysis considers the problem of clustering the tissue samples on the basis of the genes which is a non-standard problem because the number of genes greatly exceed the number of tissue samples. We demonstrate how EMMIX-GENE can be useful in reducing the initial set of genes down to a more computationally manageable size. The results from this analysis also emphasise the difficulty associated with the task of separating two tissue groups on the basis of a particular subset of genes. These results also shed light on why supervised methods have such a high misallocation error rate for the breast cancer data.
Resumo:
Este artigo é uma introdução à teoria do paradigma desconstrutivo de aprendizagem cooperativa. Centenas de estudos provam com evidências o facto de que as estruturas e os processos de aprendizagem cooperativa aumentam o desempenho académico, reforçam as competências de aprendizagem ao longo da vida e desenvolvem competências sociais, pessoais de cada aluno de uma forma mais eficaz e usta, comparativamente às estruturas tradicionais de aprendizagem nas escolas. Enfrentando os desafios dos nossos sistemas educativos, seria interessante elaborar o quadro teórico do discurso da aprendizagem cooperativa, dos últimos 40 anos, a partir de um aspeto prático dentro do contexto teórico e metodológico. Nas últimas décadas, o discurso cooperativo elaborou os elementos práticos e teóricos de estruturas e processos de aprendizagem cooperativa. Gostaríamos de fazer um resumo desses elementos com o objetivo de compreender que tipo de mudanças estruturais podem fazer diferenças reais na prática de ensino e aprendizagem. Os princípios básicos de estruturas cooperativas, os papéis de cooperação e as atitudes cooperativas são os principais elementos que podemos brevemente descrever aqui, de modo a criar um quadro para a compreensão teórica e prática de como podemos sugerir os elementos de aprendizagem cooperativa na nossa prática em sala de aula. Na minha perspetiva, esta complexa teoria da aprendizagem cooperativa pode ser entendida como um paradigma desconstrutivo que fornece algumas respostas pragmáticas para as questões da nossa prática educativa quotidiana, a partir do nível da sala de aula para o nível de sistema educativo, com foco na destruição de estruturas hierárquicas e antidemocráticas de aprendizagem e, criando, ao mesmo tempo, as estruturas cooperativas.
Resumo:
The problem of selecting suppliers/partners is a crucial and important part in the process of decision making for companies that intend to perform competitively in their area of activity. The selection of supplier/partner is a time and resource-consuming task that involves data collection and a careful analysis of the factors that can positively or negatively influence the choice. Nevertheless it is a critical process that affects significantly the operational performance of each company. In this work, there were identified five broad selection criteria: Quality, Financial, Synergies, Cost, and Production System. Within these criteria, it was also included five sub-criteria. After the identification criteria, a survey was elaborated and companies were contacted in order to understand which factors have more weight in their decisions to choose the partners. Interpreted the results and processed the data, it was adopted a model of linear weighting to reflect the importance of each factor. The model has a hierarchical structure and can be applied with the Analytic Hierarchy Process (AHP) method or Value Analysis. The goal of the paper it's to supply a selection reference model that can represent an orientation/pattern for a decision making on the suppliers/partners selection process
Resumo:
This paper deals with a hierarchical structure composed by an event-based supervisor in a higher level and two distinct proportional integral (PI) controllers in a lower level. The controllers are applied to a variable speed wind energy conversion system with doubly-fed induction generator, namely, the fuzzy PI control and the fractional-order PI control. The event-based supervisor analyses the operation state of the wind energy conversion system among four possible operational states: park, start-up, generating or brake and sends the operation state to the controllers in the lower level. In start-up state, the controllers only act on electric torque while pitch angle is equal to zero. In generating state, the controllers must act on the pitch angle of the blades in order to maintain the electric power around the nominal value, thus ensuring that the safety conditions required for integration in the electric grid are met. Comparisons between fuzzy PI and fractional-order PI pitch controllers applied to a wind turbine benchmark model are given and simulation results by Matlab/Simulink are shown. From the results regarding the closed loop point of view, fuzzy PI controller allows a smoother response at the expense of larger number of variations of the pitch angle, implying frequent switches between operational states. On the other hand fractional-order PI controller allows an oscillatory response with less control effort, reducing switches between operational states. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the strain hardening behavior of various gelatin networks-namely physical gelatin gel, chemically cross-linked gelatin gel, and a hybrid gel made of a combination of the former two-under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillations shear protocols. Further, the internal structures of physical gelatin gels and chemically cross-linked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically cross-linked network whereas, in the physical gelatin gels, a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as the correlation length (ξ), the cross-sectional polymer chain radius (Rc) and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physical and chemically cross-linked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized nonlinear elastic theory that has been used to fit the stress-strain curves. The chemical cross-linking that generates coils and aggregates hinders the free stretching of the triple helix bundles in the physical gels.
Resumo:
The Conservative Party emerged from the 2010 United Kingdom General Election as the largest single party, but their support was not geographically uniform. In this paper, we estimate a hierarchical Bayesian spatial probit model that tests for the presence of regional voting effects. This model allows for the estimation of individual region-specic effects on the probability of Conservative Party success, incorporating information on the spatial relationships between the regions of the mainland United Kingdom. After controlling for a range of important covariates, we find that these spatial relationships are significant and that our individual region-specic effects estimates provide additional evidence of North-South variations in Conservative Party support.
Resumo:
The study was designed to investigate the psychometric properties of the French version and the cross-language replicability of the Hierarchical Personality Inventory for Children (HiPIC). The HiPIC is an instrument aimed at assessing the five dimensions of the Five-Factor Model for Children. Subjects were 552 children aged between 8 and 12 years, rated by one or both parents. At the domain level, reliability ranged from .83 to .93 and at the facet level, reliability ranged from .69 to .89. Differences between genders were congruent with those found in the Dutch sample. Girls scored higher on Benevolence and Conscientiousness. Age was negatively correlated with Extraversion and Imagination. For girls, we also observed a decrease of Emotional Stability. A series of exploratory factor analyses confirmed the overall five-factor structure for girls and boys. Targeted factor analyses and congruence coefficients revealed high cross-language replicability at the domain and at the facet levels. The results showed that the French version of the HiPIC is a reliable and valid instrument for assessing personality with children and has a particularly high cross-language replicability.
Resumo:
A parts based model is a parametrization of an object class using a collection of landmarks following the object structure. The matching of parts based models is one of the problems where pairwise Conditional Random Fields have been successfully applied. The main reason of their effectiveness is tractable inference and learning due to the simplicity of involved graphs, usually trees. However, these models do not consider possible patterns of statistics among sets of landmarks, and thus they sufffer from using too myopic information. To overcome this limitation, we propoese a novel structure based on a hierarchical Conditional Random Fields, which we explain in the first part of this memory. We build a hierarchy of combinations of landmarks, where matching is performed taking into account the whole hierarchy. To preserve tractable inference we effectively sample the label set. We test our method on facial feature selection and human pose estimation on two challenging datasets: Buffy and MultiPIE. In the second part of this memory, we present a novel approach to multiple kernel combination that relies on stacked classification. This method can be used to evaluate the landmarks of the parts-based model approach. Our method is based on combining responses of a set of independent classifiers for each individual kernel. Unlike earlier approaches that linearly combine kernel responses, our approach uses them as inputs to another set of classifiers. We will show that we outperform state-of-the-art methods on most of the standard benchmark datasets.
Resumo:
Species distribution models (SDMs) studies suggest that, without control measures, the distribution of many alien invasive plant species (AIS) will increase under climate and land-use changes. Due to limited resources and large areas colonised by invaders, management and monitoring resources must be prioritised. Choices depend on the conservation value of the invaded areas and can be guided by SDM predictions. Here, we use a hierarchical SDM framework, complemented by connectivity analysis of AIS distributions, to evaluate current and future conflicts between AIS and high conservation value areas. We illustrate the framework with three Australian wattle (Acacia) species and patterns of conservation value in Northern Portugal. Results show that protected areas will likely suffer higher pressure from all three Acacia species under future climatic conditions. Due to this higher predicted conflict in protected areas, management might be prioritised for Acacia dealbata and Acacia melanoxylon. Connectivity of AIS suitable areas inside protected areas is currently lower than across the full study area, but this would change under future environmental conditions. Coupled SDM and connectivity analysis can support resource prioritisation for anticipation and monitoring of AIS impacts. However, further tests of this framework over a wide range of regions and organisms are still required before wide application.
Resumo:
OBJECTIVE: An animal model has been developed to compare the effects of suture technique on the luminal dimensions and compliance of end-to-side vascular anastomoses. METHODS: Carotid and internal mammalian arteries (IMAs) were exposed in three pigs (90 kg). IMAs were sectioned distally to perform end-to-side anastomoses on carotid arteries. One anastomosis was performed with 7/0 polypropylene running suture. The other was performed with the automated suture delivery device (Perclose/Abbott Labs Inc.) that makes a 7/0 polypropylene interrupted suture. Four piezoelectric crystals were sutured on toe, heel and both lateral sides of each anastomosis to measure anastomotic axes. Anastomotic cross-sectional area (CSAA) was calculated with: CSAA = pi x mM/4 where m and M are the minor and major axes of the elliptical anastomosis. Cross-sectional anastomotic compliance (CSAC) was calculated as CSAC=Delta CSAA/Delta P where Delta P is the mean pulse pressure and Delta CSAA is the mean CSAA during cardiac cycle. RESULTS: We collected a total of 1200000 pressure-length data per animal. For running suture we had a mean systolic CSAA of 26.94+/-0.4 mm(2) and a mean CSAA in diastole of 26.30+/-0.5 mm(2) (mean Delta CSAA was 0.64 mm(2)). CSAC for running suture was 4.5 x 10(-6)m(2)/kPa. For interrupted suture we had a mean CSAA in systole of 21.98+/-0.2 mm(2) and a mean CSAA in diastole of 17.38+/-0.3 mm(2) (mean Delta CSAA was 4.6+/-0.1 mm(2)). CSAC for interrupted suture was 11 x 10(-6) m(2)/kPa. CONCLUSIONS: This model, even with some limitations, can be a reliable source of information improving the outcome of vascular anastomoses. The study demonstrates that suture technique has a substantial effect on cross-sectional anastomotic compliance of end-to-side anastomoses. Interrupted suture may maximise the anastomotic lumen and provides a considerably higher CSAC than continuous suture, that reduces flow turbulence, shear stress and intimal hyperplasia. The Heartflo anastomosis device is a reliable instrument that facilitates performance of interrupted suture anastomoses.
Resumo:
The present study compares the higher-level dimensions and the hierarchical structures of the fifth edition of the 16 PF with those of the NEO PI-R. Both inventories measure personality according to five higher-level dimensions. These inventories were however constructed according to different methods (bottom-up vs. top-down). 386 participants filled out both questionnaires. Correlations, regressions and canonical correlations made it possible to compare the inventories. As expected they roughly measure the same aspects of personality. There is a coherent association among four of the five dimensions measured in the tests. However Agreeableness, the remaining dimension in the NEO PI-R, is not represented in the 16 PF 5. Our analyses confirmed the hierarchical structures of both instruments, but this confirmation was more complete in the case of the NEO PI-R. Indeed, a parallel analysis indicated that a four-factor solution should be considered in the case of the 16 PF 5. On the other hand, the NEO PI-R's five-factor solution was confirmed. The top-down construction of this instrument seems to make for a more legible structure. Of the two five-dimension constructs, the NEO PI-R thus seems the more reliable. This confirms the relevance of the Five Factor Model of personality.
Resumo:
Rare species have restricted geographic ranges, habitat specialization, and/or small population sizes. Datasets on rare species distribution usually have few observations, limited spatial accuracy and lack of valid absences; conversely they provide comprehensive views of species distributions allowing to realistically capture most of their realized environmental niche. Rare species are the most in need of predictive distribution modelling but also the most difficult to model. We refer to this contrast as the "rare species modelling paradox" and propose as a solution developing modelling approaches that deal with a sufficiently large set of predictors, ensuring that statistical models aren't overfitted. Our novel approach fulfils this condition by fitting a large number of bivariate models and averaging them with a weighted ensemble approach. We further propose that this ensemble forecasting is conducted within a hierarchic multi-scale framework. We present two ensemble models for a test species, one at regional and one at local scale, each based on the combination of 630 models. In both cases, we obtained excellent spatial projections, unusual when modelling rare species. Model results highlight, from a statistically sound approach, the effects of multiple drivers in a same modelling framework and at two distinct scales. From this added information, regional models can support accurate forecasts of range dynamics under climate change scenarios, whereas local models allow the assessment of isolated or synergistic impacts of changes in multiple predictors. This novel framework provides a baseline for adaptive conservation, management and monitoring of rare species at distinct spatial and temporal scales.
Resumo:
We provide methods for forecasting variables and predicting turning points in panel Bayesian VARs. We specify a flexible model which accounts for both interdependencies in the cross section and time variations in the parameters. Posterior distributions for the parameters are obtained for a particular type of diffuse, for Minnesota-type and for hierarchical priors. Formulas for multistep, multiunit point and average forecasts are provided. An application to the problem of forecasting the growth rate of output and of predicting turning points in the G-7 illustrates the approach. A comparison with alternative forecasting methods is also provided.
Resumo:
In this paper we address the issue of locating hierarchical facilities in the presence of congestion. Two hierarchical models are presented, where lower level servers attend requests first, and then, some of the served customers are referred to higher level servers. In the first model, the objective is to find the minimum number of servers and theirlocations that will cover a given region with a distance or time standard. The second model is cast as a Maximal Covering Location formulation. A heuristic procedure is then presented together with computational experience. Finally, some extensions of these models that address other types of spatial configurations are offered.