891 resultados para Hierarchical Clustering Model
Resumo:
In this paper we study several natural and man-made complex phenomena in the perspective of dynamical systems. For each class of phenomena, the system outputs are time-series records obtained in identical conditions. The time-series are viewed as manifestations of the system behavior and are processed for analyzing the system dynamics. First, we use the Fourier transform to process the data and we approximate the amplitude spectra by means of power law functions. We interpret the power law parameters as a phenomenological signature of the system dynamics. Second, we adopt the techniques of non-hierarchical clustering and multidimensional scaling to visualize hidden relationships between the complex phenomena. Third, we propose a vector field based analogy to interpret the patterns unveiled by the PL parameters.
Resumo:
The last 40 years of the world economy are analyzed by means of computer visualization methods. Multidimensional scaling and the hierarchical clustering tree techniques are used. The current Western downturn in favor of Asian partners may still be reversed in the coming decades.
Resumo:
Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.
Resumo:
This paper investigates global term structure dynamics using a Bayesian hierarchical factor model augmented with macroeconomic fundamentals. More than half of the variation in bond yields of seven advanced economies is due to global co-movement, which is mainly attributed to shocks to non-fundamentals. Global fundamentals, especially global inflation, affect yields through a ‘policy channel’ and a ‘risk compensation channel’, but the effects through two channels are offset. This evidence explains the unsatisfactory performance of fundamentals-driven term structure models. Our approach delineates asymmetric spillovers in global bond markets connected to diverging monetary policies. The proposed model is robust as identified factors has significant explanatory power of excess returns. The finding that global inflation uncertainty is useful in explaining realized excess returns does not rule out regime changing as a source of non-fundamental fluctuations.
Resumo:
En aquest projecte s’ha presentat un nou model de desenvolupament de la confiança, més flexible que els anteriors, des del punt de vista de l’usuari. El model proposat es basa en llistes de confiança per tal de resoldre els problemes d’interoperabilitat entre dominis de PKI. Aquesta proposta es basa en un model jeràrquic de PKI on s’estén la confiança mitjançant uns proveïdors de confiança.
Resumo:
Objective: To study the linkage between material deprivation and mortality from all causes, for men and women separately, in the capital cities of the provinces in Andalusia and Catalonia (Spain). Methods: A small-area ecological study was devised using the census section as the unit for analysis. 188 983 Deaths occurring in the capital cities of the Andalusian provinces and 109 478 deaths recorded in the Catalan capital cities were examined. Principal components factorial analysis was used to devise a material deprivation index comprising the percentage of manual labourers, unemployment and illiteracy. A hierarchical Bayesian model was used to study the relationship between mortality and area deprivation. Main results: In most cities, results show an increased male mortality risk in the most deprived areas in relation to the least depressed. In Andalusia, the relative risks between the highest and lowest deprivation decile ranged from 1.24 (Malaga) to 1.40 (Granada), with 95% credibility intervals showing a significant excess risk. In Catalonia, relative risks ranged between 1.08 (Girona) and 1.50 (Tarragona). No evidence was found for an excess of female mortality in most deprived areas in either of the autonomous communities. Conclusions: Within cities, gender-related differences were revealed when deprivation was correlated geographically with mortality rates. These differences were found from an ecological perspective. Further research is needed in order to validate these results from an individual approach. The idea to be analysed is to identify those factors that explain these differences at an individual level.
Resumo:
Recurrent breast cancer occurring after the initial treatment is associated with poor outcome. A bimodal relapse pattern after surgery for primary tumor has been described with peaks of early and late recurrence occurring at about 2 and 5 years, respectively. Although several clinical and pathological features have been used to discriminate between low- and high-risk patients, the identification of molecular biomarkers with prognostic value remains an unmet need in the current management of breast cancer. Using microarray-based technology, we have performed a microRNA expression analysis in 71 primary breast tumors from patients that either remained disease-free at 5 years post-surgery (group A) or developed early (group B) or late (group C) recurrence. Unsupervised hierarchical clustering of microRNA expression data segregated tumors in two groups, mainly corresponding to patients with early recurrence and those with no recurrence. Microarray data analysis and RT-qPCR validation led to the identification of a set of 5 microRNAs (the 5-miRNA signature) differentially expressed between these two groups: miR-149, miR-10a, miR-20b, miR-30a-3p and miR-342-5p. All five microRNAs were down-regulated in tumors from patients with early recurrence. We show here that the 5-miRNA signature defines a high-risk group of patients with shorter relapse-free survival and has predictive value to discriminate non-relapsing versus early-relapsing patients (AUC = 0.993, p-value<0.05). Network analysis based on miRNA-target interactions curated by public databases suggests that down-regulation of the 5-miRNA signature in the subset of early-relapsing tumors would result in an overall increased proliferative and angiogenic capacity. In summary, we have identified a set of recurrence-related microRNAs with potential prognostic value to identify patients who will likely develop metastasis early after primary breast surgery.
Resumo:
Although Leontopodium alpinum is considered to be threatened in many countries, only limited scientific information about its autecology is available. In this study, we aim to define the most important ecological factors which influence the distribution of L. alpinum in the Swiss Alps. These were assessed at the national scale using species distribution models based on topoclimatic predictors and at the community scale using exhaustive plant inventories. The latter were analysed using hierarchical clustering and principal component analysis, and the results were interpreted using ecological indicator values. L. alpinum was found almost exclusively on base-rich bedrocks (limestone and ultramaphic rocks). The species distribution models showed that the available moisture (dry regions, mostly in the Inner Alps), elevation (mostly above 2000 m.a.s.l.) and slope (mostly >30°) were the most important predictors. The relevés showed that L. alpinum is present in a wide range of plant communities, all subalpine-alpine open grasslands, with a low grass cover. As a light-demanding and short species, L. alpinum requires light at ground level; hence, it can only grow in open, nutrient-poor grasslands. These conditions are met in dry conditions (dry, summer-warm climate, rocky and draining soil, south-facing aspect and/or steep slope), at high elevations, on oligotrophic soils and/or on windy ridges. Base-rich soils appear to also be essential, although it is still unclear if this corresponds to physiological or ecological (lower competition) requirements.
Resumo:
Previous microarray studies on breast cancer identified multiple tumour classes, of which the most prominent, named luminal and basal, differ in expression of the oestrogen receptor alpha gene (ER). We report here the identification of a group of breast tumours with increased androgen signalling and a 'molecular apocrine' gene expression profile. Tumour samples from 49 patients with large operable or locally advanced breast cancers were tested on Affymetrix U133A gene expression microarrays. Principal components analysis and hierarchical clustering split the tumours into three groups: basal, luminal and a group we call molecular apocrine. All of the molecular apocrine tumours have strong apocrine features on histological examination (P=0.0002). The molecular apocrine group is androgen receptor (AR) positive and contains all of the ER-negative tumours outside the basal group. Kolmogorov-Smirnov testing indicates that oestrogen signalling is most active in the luminal group, and androgen signalling is most active in the molecular apocrine group. ERBB2 amplification is commoner in the molecular apocrine than the other groups. Genes that best split the three groups were identified by Wilcoxon test. Correlation of the average expression profile of these genes in our data with the expression profile of individual tumours in four published breast cancer studies suggest that molecular apocrine tumours represent 8-14% of tumours in these studies. Our data show that it is possible with microarray data to divide mammary tumour cells into three groups based on steroid receptor activity: luminal (ER+ AR+), basal (ER- AR-) and molecular apocrine (ER- AR+).
Resumo:
Cape Verde is a tropical oceanic ecosystem, highly fragmented and dispersed, with islands physically isolated by distance and depth. To understand how isolation affects the ecological variability in this archipelago, we conducted a research project on the community structure of the 18 commercially most important demersal fishes. An index of ecological distance based on species relative dominance (Di) is developed from Catch Per Unit Effort, derived from an extensive database of artisanal fisheries. Two ecological measures of distance between islands are calculated: at the species level, DDi, and at the community level, DD (sum of DDi). A physical isolation factor (Idb) combining distance (d) and bathymetry (b) is proposed. Covariance analysis shows that isolation factor is positively correlated with both DDi and DD, suggesting that Idb can be considered as an ecological isolation factor. The effect of Idb varies with season and species. This effect is stronger in summer (May to November), than in winter (December to April), which appears to be more unstable. Species react differently to Idb, independently of season. A principal component analysis on the monthly (DDi) for the 12 islands and the 18 species, complemented by an agglomerative hierarchical clustering, shows a geographic pattern of island organization, according to Idb. Results indicate that the ecological structure of demersal fish communities of Cape Verde archipelago, both in time and space, can be explained by a geographic isolation factor. The analytical approach used here is promising and could be tested in other archipelago systems.
Resumo:
Hierarchical clustering is a popular method for finding structure in multivariate data,resulting in a binary tree constructed on the particular objects of the study, usually samplingunits. The user faces the decision where to cut the binary tree in order to determine the numberof clusters to interpret and there are various ad hoc rules for arriving at a decision. A simplepermutation test is presented that diagnoses whether non-random levels of clustering are presentin the set of objects and, if so, indicates the specific level at which the tree can be cut. The test isvalidated against random matrices to verify the type I error probability and a power study isperformed on data sets with known clusteredness to study the type II error.
Resumo:
The interpretation of the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) is based on a 4-factor model, which is only partially compatible with the mainstream Cattell-Horn-Carroll (CHC) model of intelligence measurement. The structure of cognitive batteries is frequently analyzed via exploratory factor analysis and/or confirmatory factor analysis. With classical confirmatory factor analysis, almost all crossloadings between latent variables and measures are fixed to zero in order to allow the model to be identified. However, inappropriate zero cross-loadings can contribute to poor model fit, distorted factors, and biased factor correlations; most important, they do not necessarily faithfully reflect theory. To deal with these methodological and theoretical limitations, we used a new statistical approach, Bayesian structural equation modeling (BSEM), among a sample of 249 French-speaking Swiss children (8-12 years). With BSEM, zero-fixed cross-loadings between latent variables and measures are replaced by approximate zeros, based on informative, small-variance priors. Results indicated that a direct hierarchical CHC-based model with 5 factors plus a general intelligence factor better represented the structure of the WISC-IV than did the 4-factor structure and the higher order models. Because a direct hierarchical CHC model was more adequate, it was concluded that the general factor should be considered as a breadth rather than a superordinate factor. Because it was possible for us to estimate the influence of each of the latent variables on the 15 subtest scores, BSEM allowed improvement of the understanding of the structure of intelligence tests and the clinical interpretation of the subtest scores.
Resumo:
Peatlands are soil environments that accumulate water and organic carbon and function as records of paleo-environmental changes. The variability in the composition of organic matter is reflected in their morphological, physical, and chemical properties. The aim of this study was to characterize these properties in peatlands from the headwaters of the Rio Araçuaí (Araçuaí River) in different stages of preservation. Two cores from peatlands with different vegetation types (moist grassland and semideciduous seasonal forest) from the Rio Preto [Preto River] headwaters (conservation area) and the Córrego Cachoeira dos Borges [Cachoeira dos Borges stream] (disturbed area) were sampled. Both are tributaries of the Rio Araçuaí. Samples were taken from layers of 15 cm, and morphological, physical, and chemical analyses were performed. The 14C age and δ13C values were determined in three samples from each core and the vertical growth and organic carbon accumulation rates were estimated. Dendrograms were constructed for each peatland by hierarchical clustering of similar layers with data from 34 parameters. The headwater peatlands of the Rio Araçuaí have a predominance of organic material in an advanced stage of decomposition and their soils are classified as Typic Haplosaprists. The organic matter in the Histosols of the peatlands of the headwaters of the Rio Araçuaí shows marked differences with respect to its morphological, physical, and chemical composition, as it is influenced by the type of vegetation that colonizes it. The peat from the headwaters of the Córrego Cachoeira dos Borges is in a more advanced stage of degradation than the peat from the Rio Preto, which highlights the urgent need for protection of these ecosystems/soil environments.
Resumo:
We investigated sex specificities in the evolutionary processes shaping Y chromosome, autosomes, and mitochondrial DNA patterns of genetic structure in the Valais shrew (Sorex antinorii), a mountain dwelling species with a hierarchical distribution. Both hierarchical analyses of variance and isolation-by-distance analyses revealed patterns of population structure that were not consistent across maternal, paternal, and biparentally inherited markers. Differentiation on a Y microsatellite was lower than expected from the comparison with autosomal microsatellites and mtDNA, and it was mostly due to genetic variance among populations within valleys, whereas the opposite was observed on other markers. In addition, there was no pattern of isolation by distance for the Y, whereas there was strong isolation by distance on mtDNA and autosomes. We use a hierarchical island model of coancestry dynamics to discuss the relative roles of the microevolutionary forces that may induce such patterns. We conclude that sex-biased dispersal is the most important driver of the observed genetic structure, but with an intriguing twist: it seems that dispersal is strongly male biased at large spatial scale, whereas it is mildly biased in favor of females at local scale. These results add to recent reports of scale-specific sex-biased dispersal patterns, and emphasize the usefulness of the Y chromosome in conjunction with mtDNA and autosomes to infer sex specificities.
Resumo:
The ability to obtain gene expression profiles from human disease specimens provides an opportunity to identify relevant gene pathways, but is limited by the absence of data sets spanning a broad range of conditions. Here, we analyzed publicly available microarray data from 16 diverse skin conditions in order to gain insight into disease pathogenesis. Unsupervised hierarchical clustering separated samples by disease as well as common cellular and molecular pathways. Disease-specific signatures were leveraged to build a multi-disease classifier, which predicted the diagnosis of publicly and prospectively collected expression profiles with 93% accuracy. In one sample, the molecular classifier differed from the initial clinical diagnosis and correctly predicted the eventual diagnosis as the clinical presentation evolved. Finally, integration of IFN-regulated gene programs with the skin database revealed a significant inverse correlation between IFN-β and IFN-γ programs across all conditions. Our study provides an integrative approach to the study of gene signatures from multiple skin conditions, elucidating mechanisms of disease pathogenesis. In addition, these studies provide a framework for developing tools for personalized medicine toward the precise prediction, prevention, and treatment of disease on an individual level.