973 resultados para Hidden conditional random field


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a methodology is proposed for the geometric refinement of laser scanning building roof contours using high-resolution aerial images and Markov Random Field (MRF) models. The proposed methodology takes for granted that the 3D description of each building roof reconstructed from the laser scanning data (i.e., a polyhedron) is topologically correct and that it is only necessary to improve its accuracy. Since roof ridges are accurately extracted from laser scanning data, our main objective is to use high-resolution aerial images to improve the accuracy of roof outlines. In order to meet this goal, the available roof contours are first projected onto the image-space. After that, the projected polygons and the straight lines extracted from the image are used to establish an MRF description, which is based on relations ( relative length, proximity, and orientation) between the two sets of straight lines. The energy function associated with the MRF is minimized by using a modified version of the brute force algorithm, resulting in the grouping of straight lines for each roof object. Finally, each grouping of straight lines is topologically reconstructed based on the topology of the corresponding laser scanning polygon projected onto the image-space. The preliminary results showed that the proposed methodology is promising, since most sides of the refined polygons are geometrically better than corresponding projected laser scanning straight lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper is presented a region-based methodology for Digital Elevation Model segmentation obtained from laser scanning data. The methodology is based on two sequential techniques, i.e., a recursive splitting technique using the quad tree structure followed by a region merging technique using the Markov Random Field model. The recursive splitting technique starts splitting the Digital Elevation Model into homogeneous regions. However, due to slight height differences in the Digital Elevation Model, region fragmentation can be relatively high. In order to minimize the fragmentation, a region merging technique based on the Markov Random Field model is applied to the previously segmented data. The resulting regions are firstly structured by using the so-called Region Adjacency Graph. Each node of the Region Adjacency Graph represents a region of the Digital Elevation Model segmented and two nodes have connectivity between them if corresponding regions share a common boundary. Next it is assumed that the random variable related to each node, follows the Markov Random Field model. This hypothesis allows the derivation of the posteriori probability distribution function whose solution is obtained by the Maximum a Posteriori estimation. Regions presenting high probability of similarity are merged. Experiments carried out with laser scanning data showed that the methodology allows to separate the objects in the Digital Elevation Model with a low amount of fragmentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a method for the automatic extraction of building roof contours from a LiDAR-derived digital surface model (DSM). The method is based on two steps. First, to detect aboveground objects (buildings, trees, etc.), the DSM is segmented through a recursive splitting technique followed by a region merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. Preliminary results have shown that the proposed methodology works properly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a method by simulated annealing for building roof contours identification from LiDAR-derived digital elevation model. Our method is based on the concept of first extracting aboveground objects and then identifying those objects that are building roof contours. First, to detect aboveground objects (buildings, trees, etc.), the digital elevation model is segmented through a recursive splitting technique followed by a region merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. The solution of this function is a polygon set corresponding to building roof contours and is found by using a minimization technique, like the Simulated Annealing algorithm. Experiments carried out with laser scanning digital elevation model showed that the methodology works properly, as it provides roof contour information with approximately 90% shape accuracy and no verified false positives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a method is proposed to refine the LASER 3D roofs geometrically by using a high-resolution aerial image and Markov Random Field (MRF) models. In order to do so, a MRF description for grouping straight lines is developed, assuming that each projected side contour and ridge is topologically correct and that it is only necessary to improve its accuracy. Although the combination of laser data with data from image is most justified for refining roof contour, the structure of ridges can give greater robustness in the topological description of the roof structure. The MRF model is formulated based on relationships (length, proximity, and orientation) between the straight lines extracted from the image and projected polygon and also on retangularity and corner injunctions. The energy function associated with MRF is minimized by the genetic algorithm optimization method, resulting in the grouping of straight lines for each roof object. Finally, each grouping of straight lines is topologically reconstructed based on the topology of the corresponding LASER scanning polygon projected onto the image-space. The results obtained were satisfactory. This method was able to provide polygons roof refined buildings in which most of its contour sides and ridges were geometrically improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present a supersymmetric extension of the quantum spherical model, both in components and also in the superspace formalisms. We find the solution for short- and long-range interactions through the imaginary time formalism path integral approach. The existence of critical points (classical and quantum) is analyzed and the corresponding critical dimensions are determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gegenstand dieser Arbeit ist die Untersuchung der strukturellen und magnetischen Eigenschaften von (111)-texturierten epitaktischen dünnen Co/Pt-Vielfachschichten und Pt/Co/Pt-Heterostrukturen. Mit Hilfe von Röntgen-Diffraktions-Experimenten wurde der Einfluß der Oberflächenqualität des MgO (111) Substratmaterials auf die Zwischenlagenstruktur und die kristalline Ordnung in den Filmen analysiert. Es konnte nachgewiesen werden, daß die Unordnung an der Co/Pt-Grenzfläche unterhalb einer Längenskala von 6 nm allein durch die Wachstums- und Interdiffusionsprozesse zwischen der Co- und der Pt-Lage bestimmt ist, unabhängig von der Qualität der Substratoberfläche. Demgegenüber zeigte sich, daß durch eine besondere Substratbehandlung eine langreichweitige kristalline Kohärenz der Schichten und eine Unterdrückung der Verzwillingung aus abc- und acb-Wachstumsdomänen des fcc-Platin erzielt werden können. Anhand integraler Messungen des magneto-optischen Kerr-Effektes wurde ein direkter Zusammenhang zwischen der Substrat-induzierten Defektdichte der Filme und der Nukleation magnetischer Domänen während der Ummagnetisierung nachgewiesen. Pt/Co/Pt-Dreifachlagen mit Kobalt-Dicken bis zu 1 nm besitzen eine senkrechte magnetische Anisotropie und zeigen magnetische Domänen mit Größen von bis zu einigen hundert Mikrometern, die mit Hilfe optischer Kerr-Mikroskopie visualisiert wurden. In Pt/Co/Pt-Dreifachschichten mit weniger als drei Monolagen Kobalt, welche auf vicinalen MgO (111)-Substraten aufgebracht wurden, treten während der Ummagnetisierung aufgrund anisotroper Domänenwandbewegung charakteristische dreieckige Domänenformen auf. Es wurde ein mikroskopischer Mechanismus vorgeschlagen, welcher dieses anisotrope Pinning von magnetischen Domänenwänden an mesoskopischen Stufen-Strukturen der Substratoberfläche beschreibt. Zur quantitativen Beschreibung der anisotropen Domänenwandbewegung wurden zweidimensionale numerische Simulationen durchgeführt, basierend auf einem modifizierten Random-Field-Ising-Modell mit einem Ginzburg-Landau-artigen Hamiltonian, in dem der Einfluß der Stufenkanten auf den Ordnungsparamter durch ein neu eingeführtes effektives anisotropes Feld G(r) repräsentiert ist. Unter Annahme einer lateralen Anordnung der Stufenkanten in Form eines Fischgrätenmusters konnten im Rahmen dieses Modells die experimentell beobachteten charakteristischen anisotropen Domänenformen sowie die Skaleneigenschaften der Domänenwände in exzellenter Weise numerisch reproduziert werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) have rapidly become a standard method for disease gene discovery. Many recent GWAS indicate that for most disorders, only a few common variants are implicated and the associated SNPs explain only a small fraction of the genetic risk. The current study incorporated gene network information into gene-based analysis of GWAS data for Crohn's disease (CD). The purpose was to develop statistical models to boost the power of identifying disease-associated genes and gene subnetworks by maximizing the use of existing biological knowledge from multiple sources. The results revealed that Markov random field (MRF) based mixture model incorporating direct neighborhood information from a single gene network is not efficient in identifying CD-related genes based on the GWAS data. The incorporation of solely direct neighborhood information might lead to the low efficiency of these models. Alternative MRF models looking beyond direct neighboring information are necessary to be developed in the future for the purpose of this study.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The classification of airborne lidar data is a relevant task in different disciplines. The information about the geometry and the full waveform can be used in order to classify the 3D point cloud. In Wadden Sea areas the classification of lidar data is of main interest for the scientific monitoring of coastal morphology and habitats, but it becomes a challenging task due to flat areas with hardly any discriminative objects. For the classification we combine a Conditional Random Fields framework with a Random Forests approach. By classifying in this way, we benefit from the consideration of context on the one hand and from the opportunity to utilise a high number of classification features on the other hand. We investigate the relevance of different features for the lidar points in coastal areas as well as for the interaction of neighbouring points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Belief propagation (BP) is a technique for distributed inference in wireless networks and is often used even when the underlying graphical model contains cycles. In this paper, we propose a uniformly reweighted BP scheme that reduces the impact of cycles by weighting messages by a constant ?edge appearance probability? rho ? 1. We apply this algorithm to distributed binary hypothesis testing problems (e.g., distributed detection) in wireless networks with Markov random field models. We demonstrate that in the considered setting the proposed method outperforms standard BP, while maintaining similar complexity. We then show that the optimal ? can be approximated as a simple function of the average node degree, and can hence be computed in a distributed fashion through a consensus algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MP2RAGE has proven to be a bias-free MR acquisition with excellent contrast between grey and white matter. We investigated the ability of three state-of-the-art algorithms to automatically extract white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) from MPRAGE and MP2RAGE images: unified Segmentation (S) in SPM82 , its extension New Segment (NS), and an in-house Expectation-Maximization Markov Random Field tissue classification3 (EM-MRF) with Graph Cut (GC) optimization4 . Our goal is to quantify the differences between MPRAGE and MP2RAGE-based brain tissue probability maps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a microcanonical Monte Carlo simulation of the site-diluted Potts model in three dimensions with eight internal states, partly carried out on the citizen supercomputer Ibercivis. Upon dilution, the pure model’s first-order transition becomes of the second order at a tricritical point. We compute accurately the critical exponents at the tricritical point. As expected from the Cardy-Jacobsen conjecture, they are compatible with their random field Ising model counterpart. The conclusion is further reinforced by comparison with older data for the Potts model with four states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a new second-order method of texture analysis called Adaptive Multi-Scale Grey Level Co-occurrence Matrix (AMSGLCM), based on the well-known Grey Level Co-occurrence Matrix (GLCM) method. The method deviates significantly from GLCM in that features are extracted, not via a fixed 2D weighting function of co-occurrence matrix elements, but by a variable summation of matrix elements in 3D localized neighborhoods. We subsequently present a new methodology for extracting optimized, highly discriminant features from these localized areas using adaptive Gaussian weighting functions. Genetic Algorithm (GA) optimization is used to produce a set of features whose classification worth is evaluated by discriminatory power and feature correlation considerations. We critically appraised the performance of our method and GLCM in pairwise classification of images from visually similar texture classes, captured from Markov Random Field (MRF) synthesized, natural, and biological origins. In these cross-validated classification trials, our method demonstrated significant benefits over GLCM, including increased feature discriminatory power, automatic feature adaptability, and significantly improved classification performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Minimum/maximum autocorrelation factor (MAF) is a suitable algorithm for orthogonalization of a vector random field. Orthogonalization avoids the use of multivariate geostatistics during joint stochastic modeling of geological attributes. This manuscript demonstrates in a practical way that computation of MAF is the same as discriminant analysis of the nested structures. Mathematica software is used to illustrate MAF calculations from a linear model of coregionalization (LMC) model. The limitation of two nested structures in the LMC for MAF is also discussed and linked to the effects of anisotropy and support. The analysis elucidates the matrix properties behind the approach and clarifies relationships that may be useful for model-based approaches. (C) 2003 Elsevier Science Ltd. All rights reserved.