865 resultados para Hexose transporter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify genes specifically or predominantly expressed in the stigmas/styles and to establish their possible function in the reproductive process of plants, a tobacco stigma/style cDNA library was constructed and differentially screened, resulting in the isolation of several cDNA clones. The molecular characterization of one of these clones is described here. After sequencing the cDNA and the isolated genomic clone, it was determined that the corresponding gene encodes a protein containing an ATP-binding cassette, characteristic of ABC transporters. This gene, designated as NtWBC1 (Nicotiana tabacum ABC transporter of the White-Brown Complex subfamily), encodes a protein that contains the typical structure of the 'half-transporters' of the White subfamily. To establish the spatial expression pattern of the NtWBC1 gene, northern blot and real-time RT-PCR analyses with total RNA from roots, stems, leaves, sepals, petals, stamens, stigmas/styles, ovaries, and seeds were performed. The result revealed a transcript of 2.5 kb present at high levels in stigmas and styles and a smaller transcript (2.3 kb) present at a lower level in stamens. NtWBC1 expression is developmentally regulated in stigmas/styles, with mRNA accumulation increasing toward anthesis. In situ hybridization experiments demonstrated that NtWBC1 is expressed in the stigmatic secretory zone and in anthers, at the stomium region and at the vascular bundle. NtWBC1 is the first ABC transporter gene with specific expression in plant reproductive organs to be identified and its expression pattern suggests important role(s) in the reproductive process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pterogyne nitens (Fabaceae) tree, native to South America, has been found to produce guanidine alkaloids as well as bioactive flavonols such as kaempferol, quercetin, and rutin. In the present study, we examined the possibility of interaction between human ATP-binding cassette (ABC) transporter ABCB1 and four guanidine alkaloids isolated from P. nitens (i.e., galegine, nitensidine A, pterogynidine, and pterogynine) using human T cell lymphoblast-like leukemia cell line CCRF-CEM and its multi-drug resistant (MDR) counterpart CEM/ADR5000. In XTT assays, CEM/ADR5000 cells were resistant to the four guanidine alkaloids compared to CCRF-CEM cells, although the four guanidine alkaloids exhibited some level of cytotoxicity against both CCRF-CEM and CEM/ADR5000 cells. In ATPase assays, three of the four guanidine alkaloids were found to stimulate the ATPase activity of ABCB1. Notably, nitensidine A was clearly found to stimulate the ATPase activity of ABCB1 as strongly as the control drug, verapamil. Furthermore, the cytotoxic effect of nitensidine A on CEM/ADR5000 cells was synergistically enhanced by verapamil. Nitensidine A inhibited the extrusion of calcein by ABCB1. In the present study, the possibility of interaction between ABCB1 and two synthetic nitensidine A analogs (nitensidine AT and AU) were examined to gain insight into the mechanism by which nitensidine A stimulates the ATPase activity of ABCB1. The ABCB1-dependent ATPase activity stimulated by nitensidine A was greatly reduced by substituting sulfur (S) or oxygen (O) for the imino nitrogen atom (N) in nitensidine A. Molecular docking studies on human ABCB1 showed that, guanidine alkaloids from P. nitens dock to the same binding pocket as verapamil. Nitensidine A and its analogs exhibit similar binding energies to verapamil. Taken together, this research clearly indicates that nitensidine A is a novel substrate for ABCB1. The present results also suggest that the number, binding site, and polymerization degree of the isoprenyl moiety in the guanidine alkaloids and the imino nitrogen atom cooperatively contribute to their stimulation of ABCB1's ATPase activity. © 2013 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the role of aminoguanidine and benfotiamine on the inhibition of reactive oxygen species (ROS) generation in macrophages induced by advanced glycated albumin (AGE-albumin) and its relationship with cell cholesterol homeostasis, emphasizing the expression of the ATP binding cassette transporter A-1 (ABCA-1). AGE-albumin was made by incubating fatty acid-free albumin with 10 mM glycolaldehyde. ROS production and ABCA-1 protein level were determined by flow cytometry in J774 macrophages treated along time with control (C) or AGE-albumin alone or in the presence of aminoguanidine or benfotiamine. Mitochondrial function was evaluated by oxygraphy. Compared to C-albumin, AGE-albumin increased ROS production in macrophages, which was ascribed to the activities of NADPH oxidase and of the mitochondrial system. Mitochondrial respiratory chain activity was reduced in cells incubated with AGE-albumin. ROS generation along time was associated with the reduction in macrophage ABCA-1 protein level. Aminoguanidine prevented ROS elevation and restored the ABCA-1 content in macrophages; on the other hand, benfotiamine that promoted a lesser reduction in ROS generation was not able to restore ABCA-1 levels. Inhibition of oxidative stress induced by AGE-albumin prevents disturbances in reverse cholesterol transport by curbing the reduction of ABCA-1 elicited by advanced glycation in macrophages and therefore may contribute to the prevention of atherosclerosis in diabetes mellitus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monocarboxylate transporters (MCTs) have been described to play an important role in cancer, but to date there are no reports on the significance of MCT expression in gastrointestinal stromal tumors (GISTs). The aim of the present work was to assess the value of MCT expression, as well as co-expression with the MCT chaperone CD147 in GISTs and evaluate their clinical-pathological significance. We analyzed the immunohistochemical expression of MCT1, MCT2, MCT4 and CD147 in a series of 64 GISTs molecularly characterized for KIT, PDGFRA and BRAF mutations. MCT1, MCT2 and MCT4 were highly expressed in GISTs. CD147 expression was associated with mutated KIT (p = 0.039), as well as a progressive increase in Fletcher's Risk of Malignancy (p = 0.020). Importantly, co-expression of MCT1 with CD147 was associated with low patient's overall survival (p = 0.037). These findings suggest that co-expression of MCT1 with its chaperone CD147 is involved in GISTs aggressiveness, pointing to a contribution of cancer cell metabolic adaptations in GIST development and/or progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aspergillus fumigatus is a primary and opportunistic pathogen, as well as a major allergen, of mammals. The Ca+2-calcineurin pathway affects virulence, morphogenesis and antifungal drug action in A. fumigatus. Here, we investigated three components of the A. fumigatus Ca+2-calcineurin pathway, pmcA,-B, and -C, which encode calcium transporters. We demonstrated that CrzA can directly control the mRNA accumulation of the pmcA-C genes by binding to their promoter regions. CrzA-binding experiments suggested that the 5'-CACAGCCAC-3' and 5'-CCCTGCCCC-3' sequences upstream of pmcA and pmcC genes, respectively, are possible calcineurin-dependent response elements (CDREs)-like consensus motifs. Null mutants were constructed for pmcA and -beta and a conditional mutant for pmcC demonstrating pmcC is an essential gene. The Delta pmcA and Delta pmcB mutants were more sensitive to calcium and resistant to manganese and cyclosporin was able to modulate the sensitivity or resistance of these mutants to these salts, supporting the interaction between calcineurin and the function of these transporters. The pmcA-C genes have decreased mRNA abundance into the alveoli in the Delta calA and Delta crzA mutant strains. However, only the A. fumigatus Delta pmcA was avirulent in the murine model of invasive pulmonary aspergillosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquaporins and Rh proteins can function as gas (CO2 and NH3) channels. The present study explores the urea, H2O, CO2, and NH3 permeability of the human urea transporter B (UT-B) (SLC14A1), expressed in Xenopus oocytes. We monitored urea uptake using [14C]urea and measured osmotic water permeability (Pf) using video microscopy. To obtain a semiquantitative measure of gas permeability, we used microelectrodes to record the maximum transient change in surface pH (∆pHS) caused by exposing oocytes to 5% CO2/33 mM HCO3- (pHS increase) or 0.5 mM NH3/NH4+ (pHS decrease). UT-B expression increased oocyte permeability to urea by >20-fold, and Pf by 8-fold vs. H2O-injected control oocytes. UT-B expression had no effect on the CO2-induced ∆pHS but doubled the NH3-induced ∆pHS. Phloretin reduced UT-B-dependent urea uptake (Jurea * ) by 45%, Pf * by 50%, and (- ∆pHS * )NH3 by 70%. p-Chloromercuribenzene sulfonate reduced Jurea * by 25%, Pf * by 30%, and (∆pHS * )NH3 by 100%. Molecular dynamics (MD) simulations of membrane-embedded models of UT-B identified the monomeric UT-B pores as the main conduction pathway for both H2O and NH3 and characterized the energetics associated with permeation of these species through the channel. Mutating each of two conserved threonines lining the monomeric urea pores reduced H2O and NH3 permeability. Our data confirm that UT-B has significant H2O permeability and for the first time demonstrate significant NH3 permeability. Thus the UTs become the third family of gas channels. Inhibitor and mutagenesis studies and results of MD simulations suggest that NH3 and H2O pass through the three monomeric urea channels in UT-B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ctr family is an essential part of the copper homeostasis machinery and its members share sequence homology and structural and functional features. Higher eukaryotes express two members of this family Ctr1 and Ctr2. Numerous structural and functional studies are available for Ctr1, the only high affinity Cu(I) transporter thus far identified. Ctr1 holigotrimers mediate cellular copper uptake and this protein was demonstrated to be essential for embryonic development and to play a crucial role in dietary copper acquisition. Instead very little is known about Ctr2, it bears structural homology to the yeast vacuolar copper transporter, which mediates mobilization of vacuolar copper stores. Recent studies using over-expressed epitope-tagged forms of human Ctr2 suggested a function as a low affinity copper transporter that can mediate either copper uptake from the extracellular environment or mobilization of lysosomal copper stores. Using an antibody that recognizes endogenous mouse Ctr2, we studied the expression and localization of endogenous mouse Ctr2 in cell culture and in mouse models to understand its regulation and function in copper homeostasis. By immunoblot we observed a regulation of mCtr2 protein levels in a copper and Ctr1 dependent way. Our observations in cells and transgenic mice suggest that lack of Ctr1 induces a strong downregulation of Ctr2 probably by a post-translational mechanism. By indirect immunofluorescence we observed an exclusive intracellular localization in a perinuclear compartment and no co-localization with lysosomal markers. Immunofluorescence experiments in Ctr1 null cells, supported by sequence analysis, suggest that lysosomes may play a role in mCtr2 biology not as resident compartment, but as a degradation site. In appendix a LC-mass method for analysis of algal biotoxins belonging to the family of PsP (paralytic shellfish poisoning) is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sigma (σ) receptors are well established as a non-opioid, non-phencyclidine, and haloperidol-sensitive receptor family with its own binding profile and a characteristic distribution in the central nervous system (CNS) as well as in endocrine, immune, and some peripheral tissues. Two σ receptors subtypes, termed σ1 and σ2, have been pharmacologically characterized, but, to date, only the σ1 has also been cloned. Activation of σ1 receptors alter several neurotransmitter systems and dopamine (DA) neurotrasmission has been often shown to constitute an important target of σ receptors in different experimental models; however the exact role of σ1 receptor in dopaminergic neurotransmission remains unclear. The DA transporter (DAT) modulates the spatial and temporal aspects of dopaminergic synaptic transmission and interprer the primary mechanism by wich dopaminergic neurons terminate the signal transmission. For this reason present studies have been focused in understanding whether, in cell models, the human subtype of σ1 (hσ1) receptor is able to directly modulate the human DA transporter (hDAT). In the first part of this thesis, HEK-293 and SH-SY5Y cells were permanently transfected with the hσ1 receptor. Subsequently, they were transfected with another plasmid for transiently expressing the hDAT. The hDAT activity was estimated using the described [3H]DA uptake assay and the effects of σ ligands were evaluated by measuring the uptaken [3H]DA after treating the cells with known σ agonists and antagonists. Results illustrated in this thesis demonstrate that activation of overexpressed hσ1 receptors by (+)-pentazocine, the σ1 agonist prototype, determines an increase of 40% of the extracellular [3H]DA uptake, in comparison to non-treated controls and the σ1 antagonists BD-1047 and NE-100 prevent the positive effect of (+)-pentazocine on DA reuptake DA is likely to be considered a neurotoxic molecule. In fact, when levels of intracellular DA abnormally invrease, vescicles can’t sequester the DA which is metabolized by MAO (A and B) and COMT with consequent overproduction of oxygen reactive species and toxic catabolites. Stress induced by these molecules leads cells to death. Thus, for the second part of this thesis, experiments have been performed in order to investigate functional alterations caused by the (+)-pentazocine-mediated increase of DA uptake; particularly it has been investigated if the increase of intracellular [DA] could affect cells viability. Results obtained from this study demonstrate that (+)-pentazocine alone increases DA cell toxicity in a concentration-dependent manner only in cells co-expressing hσ1 and hDAT and σ1 antagonists are able to revert the (+)-pentazocine-induced increase of cell susceptibility to DA toxicity. In the last part of this thesis, the functional cross-talking between hσ1 receptor and hDAT has been further investigated using confocal microscopy. From the acquired data it could be suggested that, following exposure to (+)-pentazocine, the hσ1 receptors massively translocate towards the plasma membrane and colocalize with the hDATs. However, any physical interaction between the two proteins remains to be proved. In conclusion, the presented study shows for the first time that, in cell models, hσ1 receptors directly modulate the hDAT activity. Facilitation of DA uptake induced by (+)-pentazocine is reflected on the increased cell susceptibility to DA toxicity; these effects are prevented by σ1 selective antagonists. Since numerous compounds, including several drugs of abuse, bind to σ1 receptors and activating them could facilitate the damage of dopaminergic neurons, the reported protective effect showed by σ1 antagonists would represent the pharmacological basis to test these compounds in experimental models of dopaminergic neurodegenerative diseases (i.e. Parkinson’s Disease).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis is concerned with the development of novel cocaine-derived dopamine transporter ligands for the non-invasive exploration of the striatal and extra-striatal dopamine transporter (DAT) in living systems. The presynaptic dopamine transporter acquires an important function within the mediation of dopaminergic signal transduction. Its availability can serve as a measure for the overall integrity of the dopaminergic system. The DAT is upregulated in early Parkinson’s disease (PD), resulting in an increased availability of DAT-binding sites in the striatal DAT domains. Thereby, DAT imaging has become an important routine diagnostic tool for the early diagnosis of PD in patients, as well as for the differentiation of PD from symptomatically similar medical conditions. Furthermore, the dopaminergic system is involved in a variety of psychiatric diseases. In this regard, DAT-selective imaging agents may provide detailed insights into the scientific understanding of the biochemical background of both, the progress as well as the origins of the symptoms. DAT-imaging may also contribute to the determination of the dopaminergic therapeutic response for a given medication and thereby contribute to more convenient conditions for the patient. From an imaging point of view, the former demands a high availability of the radioactive probe to facilitate broad application of the modality, whereas the latter profits from short-lived probes, suitable for multi-injection studies. Therefore, labelling with longer-lived 18F-fluoride and in particular the generator nuclide 68Ga is worthwhile for clinical routine imaging. In contrast, the introduction of a 11C-label is a prerequisite for detailed scientific studies of neuronal interactions. The development of suitable DAT-ligands for medical imaging has often been complicated by the mixed binding profile of many compounds that that interact with the DAT. Other drawbacks have included high non-specific binding, extensive metabolism and slow accumulation in the DAT-rich brain areas. However, some recent examples have partially overcome the mentioned complications. Based on the structural speciality of these leads, novel ligand structures were designed and successfully synthesised in the present work. A structure activity relationship (SAR) study was conducted wherein the new structural modifications were examined for their influence on DAT-affinity and selectivity. Two of the compounds showed improvements in in vitro affinity for the DAT as well as selectivity versus the serotonin transporter (SERT) and norepinephrine transporter (NET). The main effort was focussed on the high-affinity candidate PR04.MZ, which was subsequently labelled with 18F and 11C in high yield. An initial pharmacological characterisation of PR04.MZ in rodents revealed highly specific binding to the target brain structures. As a result of low non-specific binding, the DAT-rich striatal area was clearly visualised by autoradiography and µPET. Furthermore, the radioactivity uptake into the DAT-rich brain regions was rapid and indicated fast binding equilibrium. No radioactive metabolite was found in the rat brain. [18F]PR04.MZ and [11C]PR04.MZ were compared in the primate brain and the plasma metabolism was studied. It was found that the ligands specifically visualise the DAT in high and low density in the primate brain. The activity uptake was rapid and quantitative evaluation by Logan graphical analysis and simplified reference tissue model was possible after a scanning time of 30 min. These results further reflect the good characteristics of PR04.MZ as a selective ligand of the neuronal DAT. To pursue 68Ga-labelling of the DAT, initial synthetic studies were performed as part of the present thesis. Thereby, a concept for the convenient preparation of novel bifunctional chelators (BFCs) was developed. Furthermore, the suitability of novel 1,4,7-triazacyclononane based N3S3-type BFCs for biomolecule-chelator conjugates of sufficient lipophilicity for the penetration of the blood-brain-barrier was elucidated.