946 resultados para Harald IV Gilli, king of Norway, d. 1136.
Resumo:
Tiivistelmä: Neulasten pääravinnepitoisuuksien muutokset turvekankaan alikasvoskuusikossa ylispuuhakkuun jälkeen
Resumo:
Introduction: Infection with Epstein-Barr Virus (EBV) and a lack invitamin D are emerging as the twomost significant environmental triggersof multiple sclerosis (MS). Sincewe and others have shown that CD8+T cells are important immune mediatorsof the inflammatory response inMS, we examined whether vitamin Ddirectly affects the CD8+ T cell response.We also explored if vitaminDmodulates the EBV-specific CD8+ Tcell response. Methods: PBMC of 10patients with early MS and 10 healthycontrols (HC) were stimulated eitherwith a pool of EBVimmunodominantpeptides or anti-CD3/anti-CD28 beads.Cytokine secretion was assessed witha Cytometric Beads Array (CBA),ELISA and intracellular cytokinestaining. To examine whether vitaminD could directly modulate CD8+ Tcell immune responses, we depletedCD4+ T cells using a negative selection.Results: We found that vitaminD-treated PBMC stimulated eitherwith the EBV peptide pool or anti-CD3/anti-CD28 beads adopted ananti-inflammatory profile: significantdecrease in IFN-and TNF secretion,contrasting with a significant increasein IL-5 and TGF-secretion. At baseline,but also after vitamin D stimulation,IL-5 was significantly less producedby stimulated CD8+ T cells ofearly MS than HC. Finally, using depletionof CD4+ T cells, we couldshow that vitaminDcan directlymodulateCD8+ T cells. Discussion: Ourdata suggest that vitaminDconfers ananti-inflammatory profile to CD8+ Tcells, without the help of CD4+ Tcells. Even if vitamin D has a significanteffect on CD8+ T cells of earlyMS patients, this "rescuing" effect isof smaller magnitude than in HC subjects.Finally, vitamin D does influencethe CD8+ T cell response toEBV in early MS patients, suggestingthat there is an interplay betweenthese two major environmental factorsof MS.
Resumo:
Summary
Resumo:
Summary
Resumo:
LETTER TO THE EDITOR
Resumo:
Glucagon-like peptide-1(7-37) (GLP-1) is the most potent insulinotropic hormone characterized thus far. Because its activity is preserved in non-insulin-dependent diabetes mellitus (NIDDM) patients, it is considered a potential new drug for the treatment of this disease. One limitation in its therapeutic use is a short half-life in vivo (5 minutes), due in part to a fast degradation by the endoprotease dipeptidylpeptidase IV (DPPIV). Recently, it was reported that GLP-1 became resistant to DPPIV when the alanine residue at position 8 was replaced by a glycine (GLP-1-Gly8). We report here that this change slightly decreased the affinity of the peptide for its receptor (IC50, 0.41 +/- 0.14 and 1.39 +/- 0.61 nmol/L for GLP-1 and GLP-1-Gly8, respectively) but did not change the efficiency to stimulate accumulation of intracellular cyclic adenosine monophosphate (cAMP) (EC50, 0.25 +/- 0.05 and 0.36 +/- 0.06 nmol/L for GLP-1 and GLP-1-Gly8, respectively). Second, we demonstrate for the first time that this mutant has an improved insulinotropic activity compared with the wild-type peptide when tested in vivo in an animal model of diabetes. A single injection of 0.1 nmol GLP-1-Gly8 in diabetic mice fed a high-fat diet can correct fasting hyperglycemia and glucose intolerance for several hours, whereas the activity of 1 nmol GLP-1 vanishes a few minutes after injection. These actions were correlated with increased insulin and decreased glucagon levels. Interestingly, normoglycemia was maintained over a period that was longer than the predicted peptide half-life, suggesting a yet undescribed long-term effect of GLP-1-Gly8. GLP-1-Gly8 thus has a markedly improved therapeutic potential compared with GLP-1, since it can be used at much lower doses and with a more flexible schedule of administration.
Resumo:
Tiivistelmä: Ojitettujen suokuusikoiden ravinnetarpeen määritys neulasanalyysillä
Resumo:
Tiivistelmä: Kuusen neulasanalyyttinen kaliumravitsemuksen arviointi eri vuodenaikoina
Resumo:
In this paper I present an endogenous growth model where the engine of growth is in-house R&D performed by high-tech firms. I model knowledge (patent) licensing among high-tech firms. I show that if there is knowledge licensing, high-tech firms innovate more and economic growth is higher than in cases when there are knowledge spillovers or there is no exchange of knowledge among high-tech firms. However, in case when there is knowledge licensing the number of high-tech firms is lower than in cases when there are knowledge spillovers or there is no exchange of knowledge.