950 resultados para HYDROGEN PEROXIDE
Resumo:
Reactive oxygen species (ROS) have been shown to modulate neuronal synaptic transmission and may play a role on the autonomic control of the cardiovascular system. In this study we investigated the effects produced by hydrogen peroxide (H 2O 2) injected alone or combined with the anti-oxidant agent N-acetil-l-cysteine (NAC) or catalase into the fourth brain ventricle (4th V) on mean arterial pressure and heart rate of conscious rats. Moreover the involvement of the autonomic nervous system on the cardiovascular responses to H 2O 2 into the 4th V was also investigated. Male Holtzman rats (280-320 g) with a stainless steel cannula implanted into the 4th V and polyethylene cannulas inserted into the femoral artery and vein were used. Injections of H 2O 2 (0.5, 1.0 and 1.5 μmol/0.2 μL, n = 6) into the 4th V produced transient (for 10 min) dose-dependent pressor responses. The 1.0 and 1.5 μmol doses of H 2O 2 also produced a long lasting bradycardia (at least 24 h with the high dose of H 2O 2). Prior injection of N-acetyl-l-cysteine (250 nmol/1 μL/rat) into the 4th V blockade the pressor response and attenuated the bradycardic response to H 2O 2 (1 μmol/0.5 μL/rat, n = 7) into the 4th V. Intravenous (i.v.) atropine methyl bromide (1.0 mg/kg, n = 11) abolished the bradycardia but did not affect the pressor response to H 2O 2. Prazosin hydrochloride (1.0 mg/kg, n = 6) i.v. abolished the pressor response but did not affect the bradycardia. The increase in the catalase activity (500 UEA/1 μL/rat injected into the 4th V) also abolished both, pressor and bradycardic responses to H 2O 2. The results suggest that increased ROS availability into 4th V simultaneously activate sympathetic and parasympathetic outflow inducing pressor and bradycardic responses. © 2006 Elsevier Inc. All rights reserved.
Resumo:
A simple, rapid, and automated assay for hydrogen peroxide in pharmaceutical samples was developed by combining the multicommutation system with a chemiluminescence (CL) detector. The detection was performed using a spiral flow-cell reactor made from polyethylene tubing that was positioned in front of a photodiode. It allows the rapid mixing of CL reagent and analyte and simultaneous detection of the emitted light. The chemiluminescence was based on the reaction of luminol with hydrogen peroxide catalyzed by hexacyanoferrate(III). The feasibility of the flow system was ascertained by analyzing a set of pharmaceutical samples. A linear response within the range of 2.2-210 μmol l-1 H2O2 with a LD of 1.8 μmol l-1 H2O2 and coefficient of variations smaller than 0.8% for 1.0×10-5 mol l-1 and 6.8×10-5 mol l-1 hydrogen peroxide solutions (n=10) were obtained. Reagents consumption of 90 μg of luminol and 0.7 mg of hexacyanoferrate(III) per determination and sampling rate of 200 samples per hour were also achieved. Copyright © Taylor & Francis Group, LLC.
Resumo:
A simple, rapid and sensitive spectrophotometric method has been developed for the determination of methyldopa in pharmaceutical formulations. The method is based on the reaction between tetrachloro-p-benzoquinone (p-chloranil) and methyldopa, accelerated by hydrogen peroxide (H 2O 2), producing a violet-red compound (λmax = 535 nm) at ambient temperature (25.0 ± 0.2°C). Experimental design methodologies were used to optimize the measurement conditions. Beer's law is obeyed in a concentration range from 2.10 × 10 -4 to 2.48 × 10 -3 mol L -1 (r = 0.9997). The limit of detection was 7.55 × 10 -6 mol L -1 and the limit of quantification was 2.52 × 10 -5 mol L -1. The intraday precision and interday precision were studied for 10 replicate analyses of 1.59 × 10 -3 mol L -1 methyldopa solution and the respective coefficients of variation were 0.7 and 1.1%. The proposed method was successfully applied to the determination of methyldopa in commercial brands of pharmaceuticals. No interferences were observed from the common excipients in the formulations. The results obtained by the proposed method were favorably compared with those given by the Brazilian Pharmacopoeia procedure at 95% confidence level.
Resumo:
The effects of isolated compounds from Brazilian lichens and their derivatives on H 2O 2 and NO production were studied using murine macrophages as a part of an attempt to understand their possible immunomodulatory properties. The compound cytotoxicity was studied using MTT assay. Macrophage stimulation was evaluated by the determination of NO (Griess assay) and H 2O 2 (horseradish peroxidase/phenol red) in supernatants of peritoneal macrophage cultures of Swiss mice. This research demonstrated stimulatory activities of some phenolic compounds isolated from lichens and their derivatives on H 2O 2 and NO production. Structure-activity relationships suggest several synthetic directions for further improvement of immunological activity.
Resumo:
The activities of perlatolic acid (1), atranorin (2), and lecanoric acid (3) and their derivatives, such as orsellinates and β-methyl orsellinates obtained by alcoholysis, were assessed for stimulation of the release of hydrogen peroxide and nitric oxide in cultures of peritoneal macrophage cells from mice. The hydrogen peroxide production was estimated by oxidation of phenol red, while the Griess reagent was used to determine the nitric oxide production. 1 and 4-methoxy-ethyl orsellinate (XVII) were the compounds that induced the greatest release of H 2O 2, whereas n-pentyl orsellinate (IV), iso-propyl orsellinate (V), sec-butyl orsellinate (VI), and XVII induced a small release of NO. These results indicate that lichen products and their derivatives have potential immune-modulating activities. © 2009 Verlag der Zeitschrift für Naturforschung, Tübingen.
Resumo:
The aim of this study was to evaluate the trans-enamel and trans-dentinal effects of a 35% hydrogen peroxide (H2O2) bleaching gel on odontoblast-like cells. Enamel/dentin discs obtained from bovine incisors were mounted in artificial pulp chambers (APCs). Three groups were formed: G1- 35% H2O2; G2- 35% H2O2 + halogen light application; G3- control. The treatments were repeated 5 times and the APCs were incubated for 12 h. Then, the extract was collected and applied for 24 h on the cells. Cell metabolism, total protein dosage and cell morphology were evaluated. Cell metabolism decreased by 62.09% and 61.83% in G1 and G2, respectively. The depression of cell metabolism was statistically significant when G1 and G2 were compared to G3. Total protein dosage decreased by 93.13% and 91.80% in G1 and G2, respectively. The cells in G1 and G2 exhibited significant morphological alterations after contact with the extracts. Regardless of halogen light application, the extracts caused significantly more intense cytopathic effects compared to the control group. After 5 consecutive applications of a 35% H2O2 bleaching agent, either catalyzed or not by halogen light, products of gel degradation were capable to diffuse through enamel and dentin causing toxic effects to the cells.
Resumo:
This study measured the critical temperature reaching time and also the variation of temperature in the surface of the cervical region and within the pulp chamber of human teeth submitted to dental bleaching using 35% hydrogen peroxide gel activated by three different light sources. The samples were randomly divided into 3 groups (n = 15), according to the catalyst light source: Halogen Light (HL), High Intensity Diode Laser (DL), and Light Emmited Diode (LED). The results of temperature variation were submitted to the analysis of variance and Tukey test with p < 0.05. The temperature increase (mean value and standard deviation) inside the pulp chamber for the HL group was 6.8 ± 2.8°C; for the DL group was 15.3 ± 8.8°C; and for the LED group was 1.9 ± 1.0°C for. The temperature variation (mean value and standard deviation) on the tooth surface, for the group irradiated with HL was 9.1 ± 2.2°C; for the group irradiated with DL were 25.7 ± 18.9°C; and for the group irradiated with LED were 2.6 ± 1.4°C. The mean temperature increase values were significantly higher for the group irradiated with DL when compared with groups irradiated with HL and LED (p < 0.05). When applying the inferior limits of the interval of confidence of 95%, an application time of 38.7 s was found for HL group, and 4.4 s for DL group. The LED group did not achieve the critical temperatures for pulp or the periodontal, even when irradiated for 360 s. The HL and DL light sources may be used for dental bleaching for a short period of time. The LED source did not heat the target tissues significantly within the parameters used in this study. © 2010 Pleiades Publishing, Ltd.
Resumo:
Aim: To evaluate the effect of photochemical activation of hydrogen peroxide (H2O2) bleaching gel with different wavelengths. Methods: In the study, 80 bovine incisors were used, which were stained in 25% soluble coffee and divided in 4 groups. The initial color was measured with the Easy Shade spectrophotometer by CIE Lab. An experimental 35% H2O2 bleaching gel was used, either with or without the presence of titanium dioxide (TiO2) pigment, associated with two light sources: G1 - Transparent Gel (TG) and no activation; G2 - Gel with TiO2 and activation with blue LED (l=470nm)\laser (Easy Bleach) appliance; G3 - Gel with TiO2 and activation with ultraviolet (l=345nm - UV); G4 - TG and activation with UV. Three applications of the gels were made for 10 min, and in each, 3 activations of 3 min, with interval of 30 s between them. The coloration was evaluated again and the variation in color perception (DE) was calculated. The data were submitted to one-way ANOVA and Tukey's test at 5% significance level. Results: There were significant differences between G1 and G4. The greatest E value was observed in G4 (13.37). There was no statistically significant difference (p>0.05) between the groups 2, 3 and 4. Conclusions: The presence of TiO2 particules in the bleaching gel did not interfere at the bleaching results.
Resumo:
This research aimed at studying the oxidation process, to verify the effectiveness of coliform inactivation and to evaluate the formation of ozonation disinfection byproducts (DBP) in anoxic sanitary wastewater treated with ozone/hydrogen peroxide applied at doses of 2.6 mg O3 L-1 and 2.0 mg H2O2 L-1 with contact time of 10 min and 8.1 mg O3 L-1 and 8.0 mg H2O2 L-1 with contact time of 20 min. The mean chemical oxygen demand (COD) reductions were 7.50 and 9.40% for applied dosages of 2.5-2.8 and 6.4-9.4 mg O3 L-1 + 2.0 and 8.0 mg H2O2.L-1, respectively. The Escherichia coli (E. coli) inactivation range was 2.98-4.04 log10 and the total coliform inactivation range was 2.77-4.01 log10. The aldehydes investigated were formaldehyde, acetaldehyde, glyoxal and methylglyoxal. It was observed only the formation of acetaldehyde that ranged 5.53 to 29.68 μg L-1.
Resumo:
The development of the germination process and drought stress during the drying of coffee can generate reactive oxygen species, which can be neutralized by way of antioxidant mechanisms. No studies related to antioxidant enzymes during the drying of coffee were found in the literature, and considering their importance, the enzymatic activities of superoxide dismutase (SOD), guaiacol peroxidase (GPOX) and glutathione reductase (GR), and also the hydrogen peroxide content were evaluated during the drying of two types of coffee bean, one processed as natural coffee and the other as pulped natural coffee. The results showed a reduction in the SOD, GPOX and GR enzymatic activities of the natural coffee as compared to the pulped natural coffee during the drying period. Moreover, the hydrogen peroxide content of the natural coffee was greater than that of the pulped natural coffee. These results suggest the development of oxidative stress during the coffee drying process, controlled more efficiently in pulped natural coffee by the early action of GPOX during the drying process. Nevertheless, differential responses by SOD isoenzymes and possibly the role of other peroxidases also appear to be involved in the responses observed. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
In the present work, a biosensor was built with smart material based on polymer brushes. The biosensor demonstrated a pH-sensitive on-off property, and it was further used to control or modulate the electrochemical responses of the biosensor. This property could be used to realize pH-controlled electrochemical reaction of hydrogen peroxide and HRP immobilized on polymer brushes. The composite film also showed excellent amperometric i-t response toward hydrogen peroxide in the concentration range of 0-13 μM. In future, this platform might be used for self-regulating targeted diagnostic, drug delivery and biofuel cell based on controllable bioelectrocatalysis. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)