978 resultados para HUMAN COLONIC MICROBIOTA


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mucin 5AC (MUC5AC) is secreted by goblet cells of the respiratory tract and, surprisingly, also expressed de novo in mucus secreting cancer lines. siRNA-mediated knockdown of 7343 human gene products in a human colonic cancer goblet cell line (HT29-18N2) revealed new proteins, including a Ca(2+)-activated channel TRPM5, for MUC5AC secretion. TRPM5 was required for PMA and ATP-induced secretion of MUC5AC from the post-Golgi secretory granules. Stable knockdown of TRPM5 reduced a TRPM5-like current and ATP-mediated Ca(2+) signal. ATP-induced MUC5AC secretion depended strongly on Ca(2+) influx, which was markedly reduced in TRPM5 knockdown cells. The difference in ATP-induced Ca(2+) entry between control and TRPM5 knockdown cells was abrogated in the absence of extracellular Ca(2+) and by inhibition of the Na(+)/Ca(2+) exchanger (NCX). Accordingly, MUC5AC secretion was reduced by inhibition of NCX. Thus TRPM5 activation by ATP couples TRPM5-mediated Na(+) entry to promote Ca(2+) uptake via an NCX to trigger MUC5AC secretion

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Colorectal cancer is a major health problem worldwide and many efforts have been done to delineate risk factors and develop screening strategies to reduce its incidence and mortality. Colorectal adenomas have been clearly considered preneoplastic lesions due to their potential malignant transformation via the adenoma-carcinoma sequence. Over the last years, intestinal microbiota has been studied in several diseases and it has been hypothesized that colonic microbiota could influence colorectal cancer pathogenesisObjective: The goal of this study is to analyse whether there is an association between the fecal microbiota profiling and the presence and progression of colorectal adenomas, detected in population undergoing colonoscopy, to better understand the role of intestinal microbiota in colorectal carcinogenesisDesign: A cross-sectional study in the Gastroenterology Department at Hospital Universitari Doctor Josep Trueta in Girona, in a period of time of two yearsParticipants: General population undergoing screening or diagnostic colonoscopy in the Digestive Endoscopy UnitOutcomes: Identification and characterization of intestinal microbiota in stool samples from healthy patients and patients with low and high risk colorectal adenomas

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water channels or aquaporins (AQPs) have been identified in a large variety of tissues. Nevertheless, their role in the human gastrointestinal tract, where their action is essential for the reabsorption and secretion of water and electrolytes, is still unclear. The purpose of the present study was to investigate the structure and function of water channels expressed in the human colon. A cDNA fragment of about 420 bp with a 98% identity to human AQP3 was amplified from human stomach, small intestine and colon by reverse transcription polymerase chain reaction (RT-PCR) and a transcript of 2.2 kb was expressed more abundantly in colon than in jejunum, ileum and stomach as indicated by Northern blots. Expression of mRNA from the colon of adults and children but not from other gastrointestinal regions in Xenopus oocytes enhanced the osmotic water permeability, and the urea and glycerol transport in a manner sensitive to an antisense AQP3 oligonucleotide, indicating the presence of functional AQP3. Immunocytochemistry and immunofluorescence studies in human colon revealed that the AQP3 protein is restricted to the villus epithelial cells. The immunostaining within these cells was more intense in the apical than in the basolateral membranes. The presence of AQP3 in villus epithelial cells suggests that AQP3 is implicated in water absorption across human colonic surface cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Obesity is sweeping the westernized world at a rate which far outstrips human genomic evolution, highlighting the importance of the obesogenic environment. Diet is an important component of this obesogenic environment, with certain diets (high fat, high refined carbohydrates and sugar) predisposing to overweight. On the other hand, there are also foods shown to protect against obesity and the diseases of obesity, including whole plant foods, dairy products, dietary fibre and functional foods like probiotics, prebiotics and phytochemicals. Interestingly, many of these foods mediate their health-promoting activities through the gut microbiota. The human gut microbiota itself has recently been identified as a contributory factor in this obesogenic environment, with differences observed between lean and obese. Evidence from human studies indicates that important groups of fermentative bacteria differ in abundance between lean and obese. Recently it has been suggested that anomalous microbiota composition in infancy can predispose to overweight in later life, highlighting the important role of optimal microbiota successional development, and that – as observed in laboratory animals – the gut microbiota may contribute to the aetiology of obesity. In this review we will introduce the gut microbiota, describe its interactions with major dietary components and the host, and then go on to discuss evidence indicating that the gut microbiota may contribute to the obesogenic environment. Finally, we will explore possible strategies for modulating the composition and activity of the human gut microbiota which may impact on obesity or the metabolic diseases associated with obesity. (Nutritional Therapy & Metabolism 2009; 27: 113-33)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Initial bacterial colonization, including colonization with health-positive bacteria, such as bifidobacteria and lactobacilli, is necessary for the normal development of intestinal innate and adaptive immune defenses. The predominance of beneficial bacteria in the gut microflora of breast-fed infants is thought to be, at least in part, supported by the metabolism of the complex mixture of oligosaccharides present in human breast milk, and a more adult-type intestinal microbiota is found in formula-fed infants. Inadequate gut colonization, dysbiosis, may lead to an increased risk of infectious, allergic, and autoimmune disorders later in life. The addition of appropriate amounts of selected prebiotics to infant formulas can enhance the growth of bifidobacteria or lactobacilli in the colonic microbiota and, thereby, might produce beneficial effects. Among the substrates considered as prebiotics are the oligosaccharides inulin, fructo-oligosaccharides, galacto-oligosaccharides, and lactulose. There are some reports that such prebiotics have beneficial effects on various markers of health. For example, primary prevention trials in infants have provided promising data on prevention of infections and atopic dermatitis. Additional well-designed prospective clinical trials and mechanistic studies are needed to advance knowledge further in this promising field. (J Pediatr 2009;155:S61-70).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The metabolism of chlorogenic acid., naringin, and rutin, representative members of three common families of dietary polyphenols, the hydroxycinnamates, the flavanones, and the flavonols, respectively, was studied in an in vitro mixed culture model of the human colonic microflora. Time- and concentration-dependent degradation of all three compounds was observed, which was associated with the following metabolic events after cleavage of the ester or glycosidic bond: reduction of the aliphatic double bond of the resulting hydroxycinnamate caffeic acid residue; dehydroxylation and ring fission of the heterocyclic C-ring of the resulting deglycosylated flavanone, naringenin, and of the deglycosylated flavonol, quercetin (which differed depending on the substitution). The metabolic events, their sequences, and major phenolic end products, as identified by GC-MS or LC-MS/MS, were elucidated from the structural characteristics of the investigated compounds. The major phenolic end products identified were 3-D-hydroxyphenyl)propionic acid for chlorogenic acid, 3-(4-hydroxyphenyl)-propionic acid and 3-phenylpropionic acid for naringin, and 3-hydroxyphenylacetic acid and 3-(3-hydroxyphenyl)-propionic acid for rutin. The degree of degradation of the compounds studied was significantly influenced by the substrate concentration as well as individual variations in the composition of the fecal flora. The results support extensive metabolism of dietary polyphenols in the colon, depending on substrate concentration and residence time, with resultant formation of simple phenolics, which can be considered biomarkers of colonic metabolism if subsequently absorbed. It is also apparent that a relatively small number of phenolic degradation products are formed in the colon from the diverse group of natural polyphenols. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A fermentation system was designed to model the human colonic microflora in vitro. The system provided a framework of mucin beads to encourage the adhesion of bacteria, which was encased within a dialysis membrane. The void between the beads was inoculated with faeces from human donors. Water and metabolites were removed from the fermentation by osmosis using a solution of polyethylene glycol (PEG). The system was concomitantly inoculated alongside a conventional single-stage chemostat. Three fermentations were carried out using inocula from three healthy human donors. Bacterial populations from the chemostat and biofilm system were enumerated using fluorescence in situ hybridization. The culture fluid was also analysed for its short-chain fatty acid (SCFA) content. A higher cell density was achieved in the biofilm fermentation system (taking into account the contribution made by the bead-associated bacteria) as compared with the chemostat, owing to the removal of water and metabolites. Evaluation of the bacterial populations revealed that the biofilm system was able to support two distinct groups of bacteria: bacteria growing in association with the mucin beads and planktonic bacteria in the culture fluid. Furthermore, distinct differences were observed between populations in the biofilm fermenter system and the chemostat, with the former supporting higher populations of clostridia and Escherichia coli. SCFA levels were lower in the biofilm system than in the chemostat, as in the former they were removed via the osmotic effect of the PEG. These experiments demonstrated the potential usefulness of the biofilm system for investigating the complexity of the human colonic microflora and the contribution made by sessile bacterial populations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The human colonic microflora has a central role in health and disease, being unique ill its complexity and range of functions. As such, dietary modulation is important for improved gut health, especially during the highly-sensitive stage of infancy. Diet call affect the composition of the gut microflora through the availability of different substrates for bacterial fermentation. Differences in gut microflora composition and incidence of infection exist between breast-fed and formula-fed infants, with the former thought to have improved protection. Historically, this improvement has been believed to be a result of the higher presence of reportedly-beneficial genera such as the bifidobacteria. As such, functional food ingredients such as prebiotics and probiotics could effect a beneficial modification in the composition and activities of gut microflora of infants by increasing positive flora components. The prebiotic approach aims to increase resident bacteria that are considered to be beneficial for human health, e.g. bifidobacteria and lactobacilli, while probiotics advocates the use of the live micro-organisms themselves in the diet. Both approaches have found their way into infant formula feeds and aim to more closely simulate the gut microbiota composition seen during breast-feeding.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and aims: Epidemiological evidence indicates that cereal dietary fibre (DF) may have several cardiovascular health benefits. The underlying mechanisms have not yet been elucidated. Here, the potential nutritional effects of physico-chemical. properties modifications of durum wheat dietary fibre (DWF) induced by enzyme treatment have been investigated. Methods and results: The conversion of the highly polymerised insoluble dietary fibre into soluble feruloyl oligosaccharides of DWF was achieved by a tailored enzymatic treatment. The in vitro fermentation and release of ferulic acid by intestinal microbiota from DWF before and after the enzymatic treatment were assessed using a gut model validated to mimic the human colonic microbial environment. Results demonstrated that, compared to DWF, the enzyme-treated DWF (ETD-WF) stimulated the growth of bifidobacteria and lactobacilli. Concurrently, the release of free ferulic acid by ET-DWF was almost three times higher respect to the control. No effect on the formation of short chain fatty acids was observed. Conclusions: The conversion of insoluble dietary fibre from cereals into soluble dietary fibre generated a gut microbial fermentation that supported bifidobacteria and lactobacilli. The concurrent increase in free ferulic acid from the enzyme-treated DWF might result in a higher plasma ferulic acid concentration which could be one of the reasons for the health benefits reported for dietary fibre in cardiovascular diseases. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This review focuses on methodological approaches used to study the composition of human faecal microbiota. Gene sequencing is the most accurate tool for revealing the phylogenetic relationships between bacteria. The main application of fluorescence in situ hybridization (FISH) in both microscopy and flow cytometry is to enumerate faecal bacteria. While flow cytometry is a very fast method, FISH microscopy still has a considerably lower detection limit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The human gut microbiota plays a significant role in human health through its ability to digest food ingredients and manufacture metabolites. This can be positive or negative for host welfare. Moreover, the microflora plays an active role in host defense whereby colonization resistance affords protection against pathogens. Prebiotics are nondigestible food ingredients that target beneficial components of the gut microflora (mainly colonic), particularly the bifidobacteria. In vitro and in vivo evidence has accumulated to confirm the prebiotic effects of inulin-derived fructans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epidemiological studies and healthy eating guidelines suggest a positive correlation between ingestion of whole grain cereal and food rich in fibre with protection from chronic diseases. The prebiotic potential of whole grains may be related, however, little is known about the microbiota modulatory capability of oat grain or the impact processing has on this ability. In this study the fermentation profile of whole grain oat flakes, processed to produce two different sized flakes (small and large), by human faecal microbiota was investigated in vitro. Simulated digestion and subsequent fermentation by gut bacteria was investigated using pH controlled faecal batch cultures inoculated with human faecal slurry. The different sized oat flakes, Oat 23’s (0.53–0.63 mm) and Oat 25’s/26’s (0.85–1.0 mm) were compared to oligofructose, a confirmed prebiotic, and cellulose, a poorly fermented carbohydrate. Bacterial enumeration was carried out using the culture independent technique, fluorescent in situ hybridisation, and short chain fatty acid (SCFA) production monitored by gas chromatography. Significant changes in total bacterial populations were observed after 24 h incubation for all substrates except Oat 23’s and cellulose. Oats 23’s fermentation resulted in a significant increase in the Bacteroides–Prevotella group. Oligofructose and Oats 25’s/26’s produced significant increases in Bifidobacterium in the latter stages of fermentation while numbers declined for Oats 23’s between 5 h and 24 h. This is possibly due to the smaller surface area of the larger flakes inhibiting the simulated digestion, which may have resulted in increased levels of resistant starch (Bifidobacterium are known to ferment this dietary fibre). Fermentation of Oat 25’s/26’s resulted in a propionate rich SCFA profile and a significant increase in butyrate, which have both been linked to benefiting host health. The smaller sized oats did not produce a significant increase in butyrate concentration. This study shows for the first time the impact of oat grain on the microbial ecology of the human gut and its potential to beneficially modulate the gut microbiota through increasing Bifidobacterium population.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Orlistat is an anti-obesity treatment with which several gastrointestinal (GI) side-effects are commonly associated in the initial stages of therapy. There is no physiological explanation as to why two-thirds of those who take the drug experience one or more side-effects. It has been hypothesized that the GI microbiota may protect from or contribute to these GI disturbances. Using in vitro batch culture and human gut model systems, studies were conducted to determine whether increased availability of dietary lipids and/or orlistat affect the composition and/or activity of the faecal microbiota. Results from 24-h batch culture fermentation experiments demonstrated no effect of orlistat in the presence or absence of a dietary lipid (olive oil) on the composition of bacterial communities [as determined by fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) analyses], but did show there was great variability in the lipolytic activities of the microbiotas of individuals, as determined by gas chromatography analysis of long-chain fatty acids in samples. Subsequent studies focused on the effect of orlistat in the presence and absence of lipid in in vitro human gut model systems. Systems were run for 14 days with gut model medium (GMM) only (to steady state, SS), then fed at 12-h intervals with 50 mg orlistat, 2 g olive oil or a mixture of both for 14 days. FISH and DGGE were used to monitor changes in bacterial populations. Bacteria were cultivated from the GMM only (control) systems at SS. All strains isolated were screened for lipolytic activity using tributyrin agar. FISH and DGGE demonstrated that none of the compounds (singly or in combination) added to the systems had any notable effect on microbial population dynamics for any of the donors, although Subdoligranulum populations appeared to be inhibited by orlistat in the presence or absence of lipid. Orlistat had little or no effect on the metabolism of indigenous and added lipids in the fermentation systems, but there was great variability in the way the faecal microbiotas of the donors were able to degrade added lipids. Variability in lipid degradation could be correlated with the number and activity of isolated lipolytic bacteria. The mechanism by which orlistat and the GI microbiota cause side-effects in individuals is unknown, but several hypotheses have been proposed to account for their manifestation. The demonstration of great variability in the lipolytic activity of microbiotas to degrade lipids led to a large-scale cultivation-based study of lipolytic/lipase-positive bacteria present in the human faecal microbiota. Of 4,000 colonies isolated from 15 donors using five different agars, 378 strains were identified that had lipase activity. Molecular identification of strains isolated from five donors demonstrated that lipase activity is more prevalent in the human GI microbiota than previously thought, with members of the phyla Firmicutes, Bacteroidetes and Actinobacteria identified. Molecular identification and characterization of the substrate specificities of the strains will be carried out as part of ongoing work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is growing interest in the use of inulins as substrates for the selective growth of beneficial gut bacteria such as bifidobacteria and lactobacilli because recent studies have established that their prebiotic effect is linked to several health benefits. In the present study, the impact of a very-long-chain inulin (VLCI), derived from globe artichoke (Cynara scolymus), on the human intestinal microbiota compared with maltodextrin was determined. A double-blind, cross-over study was carried out in thirty-two healthy adults who were randomised into two groups and consumed 10 g/d of either VLCI or maltodextrin, for two 3-week study periods, separated by a 3-week washout period. Numbers of faecal bifidobacteria and lactobacilli were significantly higher upon VLCI ingestion compared with the placebo. Additionally, levels of Atopobium group significantly increased, while Bacteroides–Prevotella numbers were significantly reduced. No significant changes in faecal SCFA concentrations were observed. There were no adverse gastrointestinal symptoms apart from a significant increase in mild and moderate bloating upon VLCI ingestion. These observations were also confirmed by in vitro gas production measurements. In conclusion, daily consumption of VLCI extracted from globe artichoke exerted a pronounced prebiotic effect on the human faecal microbiota composition and was well tolerated by all volunteers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Scope: Cocoa, especially the water-insoluble cocoa fraction (WICF), is a rich source of polyphenols. In this study, sequential in vitro digestion of the WICF with gastrointestinal enzymes as well as its bacterial fermentation in a human colonic model system were carried out to investigate bioaccessibility and biotransformation of WICF polyphenols, respectively. Methods and results: The yield of each enzymatic digestion step and the total antioxidant capacity (TAC) were measured and solubilized phenols were characterized by MS/MS. Fermentation of WICF and the effect on the gut microbiota, SCFA production and metabolism of polyphenols was analyzed. In vitro digestion solubilized 38.6% of WICF with pronase and Viscozyme L treatments releasing 51% of the total phenols from the insoluble material. This release of phenols does not determine a reduction in the total antioxidant capacity of the digestion-resistant material. In the colonic model WICF significantly increased of bifidobacteria and lactobacilli as well as butyrate production. Flavanols were converted into phenolic acids by the microbiota following a concentration gradient resulting in high concentrations of 3-hydroxyphenylpropionic acid (3-HPP) in the last gut compartment. Conclusion: Data showed that WICF may exert antioxidant action through the gastrointestinal tract despite its polyphenols being still bound to macromolecules and having prebiotic activity.