125 resultados para HOx
Resumo:
Geomagnetic excursions, i.e. short periods in time with much weaker geomagnetic fields and substantial changes in the position of the geomagnetic pole, occurred repeatedly in the Earth's history, e.g. the Laschamp event about 41 kyr ago. Although the next such excursion is certain to come, little is known about the timing and possible consequences for the state of the atmosphere and the ecosystems. Here we use the global chemistry climate model SOCOL-MPIOM to simulate the effects of geomagnetic excursions on atmospheric ionization, chemistry and dynamics. Our simulations show significantly increased concentrations of nitrogen oxides (NOx) in the entire stratosphere, especially over Antarctica (+15%), due to enhanced ionization by galactic cosmic rays. Hydrogen oxides (HOx) are also produced in greater amounts (up to +40%) in the tropical and subtropical lower stratosphere, while their destruction by reactions with enhanced NOx prevails over the poles and in high altitudes (by −5%). Stratospheric ozone concentrations decrease globally above 20 km by 1–2% and at the northern hemispheric tropopause by up to 5% owing to the accelerated NOx-induced destruction. A 5% increase is found in the southern lower stratosphere and troposphere. In response to these changes in ozone and the concomitant changes in atmospheric heating rates, the Arctic vortex intensifies in boreal winter, while the Antarctic vortex weakens in austral winter and spring. Surface wind anomalies show significant intensification of the southern westerlies at their poleward edge during austral winter and a pronounced northward shift in spring. Major impacts on the global climate seem unlikely.
Resumo:
Introduction: Over the last decades, Swiss sports clubs have lost their "monopoly" in the market for sports-related services and increasingly are in competition with other sports providers. For many sport clubs long-term membership cannot be seen as a matter of course. Current research on sports clubs in Switzerland – as well as for other European countries – confirms the increasing difficulties in achieving long-term member commitment. Looking at recent findings of the Swiss sport clubs report (Lamprecht, Fischer & Stamm, 2012), it can be noted, that a decrease in memberships does not equally affect all clubs. There are sports clubs – because of their specific situational and structural conditions – that have few problems with member fluctuation, while other clubs show considerable declines in membership. Therefore, a clear understanding of individual and structural factors that trigger and sustain member commitment would help sports clubs to tackle this problem more effectively. This situation poses the question: What are the individual and structural determinants that influence the tendency to continue or to quit the membership? Methods: Existing research has extensively investigated the drivers of members’ commitment at an individual level. As commitment of members usually occurs within an organizational context, the characteristics of the organisation should be also considered. However, this context has been largely neglected in current research. This presentation addresses both the individual characteristics of members and the corresponding structural conditions of sports clubs resulting in a multi-level framework for the investigation of the factors of members’ commitment in sports clubs. The multilevel analysis grant a adequate handling of hierarchically structured data (e.g., Hox, 2002). The influences of both the individual and context level on the stability of memberships are estimated in multi-level models based on a sample of n = 1,434 sport club members from 36 sports clubs. Results: Results of these multi-level analyses indicate that commitment of members is not just an outcome of individual characteristics, such as strong identification with the club, positively perceived communication and cooperation, satisfaction with sports clubs’ offers, or voluntary engagement. It is also influenced by club-specific structural conditions: stable memberships are more probable in rural sports clubs, and in clubs that explicitly support sociability, whereas sporting-success oriented goals in clubs have a destabilizing effect. Discussion/Conclusion: The proposed multi-level framework and the multi-level analysis can open new perspectives for research concerning commitment of members to sports clubs and other topics and problems of sport organisation research, especially in assisting to understand individual behavior within organizational contexts. References: Hox, J. J. (2002). Multilevel analysis: Techniques and applications. Mahwah: Lawrence Erlbaum. Lamprecht, M., Fischer, A., & Stamm, H.-P. (2012). Die Schweizer Sportvereine – Strukturen, Leistungen, Herausforderungen. Zurich: Seismo.
Resumo:
Einleitung Folgt man den aktuellen Sportentwicklungsberichten, dann sehen sich zunehmend mehr Sportvereine mit Mitgliederfluktuationen sowie stagnierenden bzw. zurückgehenden Mitglie- derzahlen konfrontiert (Lamprecht et al. 2012). Jedoch werden nicht alle Vereine in gleichem Maße mit instabilen Mitgliedschaftsverhältnissen konfrontiert. So gibt es mit Blick auf die Mitgliederstruktur Vereine, die – aufgrund ihrer spezifischen situativen und strukturellen Bedingungen – kaum Probleme mit Mitgliederfluktuation und Vereinsaustritten haben, wohin- gegen andere Vereine mitunter erhebliche Mitgliederrückgänge verzeichnen. Demnach ist zu vermuten, dass sich das soziale Handeln der Vereinsmitglieder je nach Organisationsprofil der Vereine unterscheidet. Zwar werden Verknüpfungen von Individual- und korrespondierenden Strukturdaten innerhalb der Sportvereinsforschung bereits seit geraumer Zeit gefordert (z.B. Nagel, 2007), aber bis heute nicht konsequent umgesetzt. Es stellt sich deshalb die Frage, welche organisations- und individuumsbezogenen Faktoren für die Mitgliederbindung in Sportvereinen eine Rolle spielen? Theoretisch-methodisches Vorgehen Im Zusammenhang mit der Frage der Mitgliederbindung wird davon ausgegangen, dass kontextuelle Bedingungen individuelle Entscheidungen strukturieren und somit persönliche Handlungsketten beeinflussen können (Coleman, 1990). Auf dieser Grundlage wird ein Mehr- ebenenmodell entwickelt, das neben individuellen Merkmalen auch die Strukturbedingungen von Sportvereinen berücksichtigt, die im Zusammenhang mit der individuellen Wahlhandlung zwischen stabiler Mitgliedschaft oder Austritt stehen. Der organisationale Kontext Sportverein wird dabei als Interessenorganisation konzeptualisiert, der mit seinen Kontexteigenschaften als Gelegenheits- und Opportunitätsstruktur, als kultureller sowie sozialer Bezugsrahmen gewisse Anreize schafft („Logik der Situation“), die gemäss individueller Präferenzen („Logik der Selektion“) zu Parametern des Mitgliederhandelns werden können. Die aus dem Modell abgeleiteten Annahmen werden auf der Grundlage einer Mitglieder- befragung (n = 1.434) in 36 Schweizer Sportvereinen empirisch geprüft. Die adäquate Methode, welche die hierarchische Datenstruktur (jede Messung auf der Individualebene kann eindeutig einer Messung auf der Vereinsebene zugeordnet werden) adäquat berücksichtigt und folglich das entwickelte theoretische Modell statistisch umsetzt, ist die Mehrebenenanalyse (z.B. Hox, 2002). Entsprechend wird der Einfluss der Individual- und Kontextebene auf die Mitglieder- bindung in Sportvereinen anhand unterschiedlicher Mehrebenenmodelle (Random Intercept, Random Slope sowie Cross-Level Interaktionen) geschätzt. Ergebnisse Die Analysen machen deutlich, dass sich die dauerhafte Mitgliedschaft in Sportvereinen nicht allein auf individuelle Merkmale der Mitgliedschaft, wie eine ausgeprägte Verbundenheit, ein positiv wahrgenommenes soziales Miteinander, die Zufriedenheit mit der Vereinsarbeit sowie die ehrenamtliche Mitarbeit zurückführen lässt. Darüber hinaus nehmen auch vereinsspezi-fische Strukturbedingungen Einfluss auf die Mitgliederbindung, wobei in ländlich geprägten Sportvereinen und in Vereinen, die Geselligkeit explizit fordern und in denen das Vereinsziel sportlicher Erfolg eher eine untergeordnete Rolle spielt, die Austrittswahrscheinlichkeit geringer ist. Diskussion Die Befunde machen deutlich, dass für eine dauerhafte Mitgliedschaft sowohl zweckorientierte Nutzenüberlegungen als auch solidargemeinschaftliche Handlungsorientierungen eine zentrale Rolle spielen, so dass eine ausschließliche Dienstleistungs- bzw. Kundenorientierung als Strategie der Mitgliederbindung in Sportvereinen, wie sie vielfach (auch von Verbänden) nahegelegt wird, zu kurz greifen dürfte. Weiterhin zeigt sich, dass der Sportverein als Ort der Geselligkeit nicht nur Werte des sozialen Miteinanders und solidarischen Verhaltens vermittelt, sondern auch als Katalysator der Stabilität der Mitgliedschaft wirkt, sofern entsprechende Gelegenheiten zur Verfügung stehen. Im Zusammenhang mit der Mitgliederbindung scheint damit gerade jene vereinskulturelle Orientierung von Vereinen bedeutsam, die im Zuge der Modernisierung von Vereinsangeboten gern als überholt erachtet wird. Literatur Coleman, J. S. (1990). Foundations of social theory. Cambridge, MA: Belknap. Hox, J. (2002). Multilevel analysis. Techniques and applications. Mahwah: Erlbaum. Lamprecht, M., Fischer, A. & Stamm, H.-P. (2012). Die Schweizer Sportvereine – Strukturen, Leistungen, Herausforderungen. Zürich: Seismo. Nagel, S. (2007). Akteurtheoretische Analyse der Sportvereinsentwicklung – ein theoretisch- methodischer Bezugsrahmen. Sportwissenschaft, 37, 186–201.
Resumo:
Neural tube defects (NTDs) are the most common severely disabling birth defects in the United States, with a frequency of approximately 1–2 of every 1,000 births. This text includes the identification and evaluation of candidate susceptibility genes that confer risk for the development of neural tube defects (NTDs). The project focused on isolated meningomyelocele, also termed spina bifida (SB). ^ Spina bifida is a complex disease with multifactorial inheritance, therefore the subject population (consisting of North American Caucasians and Hispanics of Mexicali-American descent) was composed of 459 simplex SB families who were tested for genetic associations utilizing the transmission disequilibrium test (TDT), a nonparametric linkage technique. Three categories of candidate genes were studied, including (1) human equivalents of genes determined in mouse models to cause NTDs, (2) HOX and PAX genes, and (3) the MTHFR gene involved in the metabolic pathway of folate. ^ The C677T variant of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene was the first mutation in this gene to be implicated as a risk factor for NTDs. Our evaluation of the MTHFR gene provides evidence that maternal C677T homozygosity is a risk factor for upper level spina bifida defects in Hispanics [OR = 2.3, P = 0.02]. This observed risk factor is of great importance due to the high prevalence of this homozygous genotype in the Hispanic population. Additionally, maternal C677T/A1298C compound heterozygosity is a risk factor for upper level spina bifida defects in non-Hispanic whites [OR = 3.6, P = 0.03]. ^ For TDT analysis, our total population of 1128 subjects were genotyped for 54 markers from within and/or flanking the 20 candidate genes/gene regions of interest. Significant TDT findings were obtained for 3 of the 54 analyzed markers: d20s101 flanking the PAX1 gene (P = 0.019), d1s228 within the PAX7 gene (P = 0.011), and d2s110 within the PAX8 gene (P = 0.013). These results were followed-up by testing the genes directly for mutations utilizing single-strand conformational analysis (SSCA) and direct sequencing. Multiple variations were detected in each of these PAX genes; however, these variations were not passed from parent to child in phase with the positively transmitted alleles. Therefore, these variations do not contribute to the susceptibility of spina bifida, but rather are previously unreported single nucleotide polymorphisms. ^
Resumo:
Although bone morphogenetic proteins (BMPs) were initially identified for their potent bone-inducing activity, their precise roles in processes of endochondral and intramembranous bone formation are far from being clear. Tissue-specific loss-of-function experiments using the BMP receptor type IA (BMPR-IA) are particularly attractive since this receptor is thought to be essential for signaling by the closely related BMPs -2, 4, and 7. To ablate signaling through this receptor during chondrogenesis, we have generated transgenic mice expressing Cre recombinase under the control of the collagen type II (Col2a1) gene regulatory sequences. Mice lacking BMPR-IA function in chondrocytes display a number of skeletal abnormalities, including defects in bones of the chondrocranium, abnormal dorsal vertebral processes, scapulae with severe hypoplasia of dorsal elements, and shortening of the long bones. Alterations in the growth plate of long bones in mutants suggest that BMPR-IA is not required for early steps of the chondrocyte specification, but is rather important in regulation of terminal differentiation. Molecular analysis revealed noticeable downregulation of the Ihh/Ptch signalling pathway, decreased chondrocyte proliferation rate and deregulation of hypertrophy. ^ In order to elucidate the role of BMP signalling in development of the limb and intramembranous ossification, we have used mice expressing Cre recombinase under control of the Prx1 (MHox) regulatory elements (M. Logan, pers comm.). Cre activity was found in those mice in the developing limb bud mesenchyme, as well as in a subset of cranial neural crest cells. Prx1-Cre-induced conditional mutants display prominent defects in distal limb outgrowth, as well as ossification defects in a number of neural crest-derived calvarial bones. Intriguingly, mutant limbs displayed alterations in patterning along all three axes. Molecular analysis revealed ectopic anterior Shh/Ptch signalling pathway activation and expression of some Hox genes. Observed loss of Msx1 and Msx2 expression in the progress zone correlates with downregulation of Cyclin D1 and decreased distal outgrowth. Abnormal ventral localization of Lmx1b-expressing cells along with observed later morphological abnormalities suggest a novel role for BMP signalling in establishment or maintaining of the dorso-ventral polarity in the limb mesoderm. ^
Resumo:
Histone acetylation plays an essential role in many DNA-related processes such as transcriptional regulation via modulation of chromatin structure. Many histone acetytransferases have been discovered and studied in the past few years, but the roles of different histone acetyltransferases (HAT) during mammalian development are not well defined at present. Gcn5 histone acetyltransferase is highly expressed until E16.5 during development. Previous studies in our lab using a constitutive null allele demonstrated that Gcn5 knock out mice are embryonic lethal, precluding the study of Gcn5 functions at later developmental stages. The creation of a conditional Gcn5 null allele, Gcn5flox allele, bypasses the early lethality. Mice homozygous for this allele are viable and appear healthy. In contrast, mice homozygous for a Gcn5 Δex3-18 allele created by Cre-loxP mediated deletion display a phenotype identical to our original Gcn5 null mice. Strikingly, a Gcn5flox(neo) allele, which contain a neomycin cassette in the second intron of Gcn5 is only partially functional and gives rise to a hypomorphic phenotype. Initiation of cranial neural tube closure at forebrain/midbrain boundary fails, resulting in an exencephaly in some Gcn5flox(neo)/flox(neo) embryos. These defects were found at an even greater penetrance in Gcn5flox(neo)/Δ embryos and become completely penetrant in the 129Sv genetic background, suggesting that Gcn5 controls mouse neural tube closure in a dose dependent manner. Furthermore, both Gcn5flox(neo)/flox(neo) and Gcn5 flox(neo)/Δ embryos exhibit anterior homeotic transformations in lower thoracic and lumbar vertebrae. These defects are accompanied by decreased expression levels and a shift in anterior expression boundary of Hoxc8 and Hoxc9. This study provides the first evidence that Gcn5 regulates Hox gene expression and is required for normal axial skeletal patterning in mice. ^
Resumo:
Oxidation of molecular hydrogen catalyzed by [NiFe] hydrogenases is a widespread mechanism of energy generation among prokaryotes. Biosynthesis of the H2-oxidizing enzymes is a complex process subject to positive control by H2 and negative control by organic energy sources. In this report we describe a novel signal transduction system regulating hydrogenase gene (hox) expression in the proteobacterium Alcaligenes eutrophus. This multicomponent system consists of the proteins HoxB, HoxC, HoxJ*, and HoxA. HoxB and HoxC share characteristic features of dimeric [NiFe] hydrogenases and form the putative H2 receptor that interacts directly or indirectly with the histidine protein kinase HoxJ*. A single amino acid substitution (HoxJ*G422S) in a conserved C-terminal glycine-rich motif of HoxJ* resulted in a loss of H2-dependent signal transduction and a concomitant block in autophosphorylating activity, suggesting that autokinase activity is essential for the response to H2. Whereas deletions in hoxB or hoxC abolished hydrogenase synthesis almost completely, the autokinase-deficient strain maintained high-level hox gene expression, indicating that the active sensor kinase exerts a negative effect on hox gene expression in the absence of H2. Substitutions of the conserved phosphoryl acceptor residue Asp55 in the response regulator HoxA (HoxAD55E and HoxAD55N) disrupted the H2 signal-transduction chain. Unlike other NtrC-like regulators, the altered HoxA proteins still allowed high-level transcriptional activation. The data presented here suggest a model in which the nonphosphorylated form of HoxA stimulates transcription in concert with a yet unknown global energy-responsive factor.
Resumo:
Control of cell identity during development is specified in large part by the unique expression patterns of multiple homeobox-containing (Hox) genes in specific segments of an embryo. Trithorax and Polycomb-group (Trx-G and Pc-G) proteins in Drosophila maintain Hox expression or repression, respectively. Mixed lineage leukemia (MLL) is frequently involved in chromosomal translocations associated with acute leukemia and is the one established mammalian homologue of Trx. Bmi-1 was first identified as a collaborator in c-myc-induced murine lymphomagenesis and is homologous to the Drosophila Pc-G member Posterior sex combs. Here, we note the axial-skeletal transformations and altered Hox expression patterns of Mll-deficient and Bmi-1-deficient mice were normalized when both Mll and Bmi-1 were deleted, demonstrating their antagonistic role in determining segmental identity. Embryonic fibroblasts from Mll-deficient compared with Bmi-1-deficient mice demonstrate reciprocal regulation of Hox genes as well as an integrated Hoxc8-lacZ reporter construct. Reexpression of MLL was able to overcome repression, rescuing expression of Hoxc8-lacZ in Mll-deficient cells. Consistent with this, MLL and BMI-I display discrete subnuclear colocalization. Although Drosophila Pc-G and Trx-G members have been shown to maintain a previously established transcriptional pattern, we demonstrate that MLL can also dynamically regulate a target Hox gene.
Resumo:
E2a-Pbx1 is a chimeric transcription factor oncoprotein produced by the t(1;19) translocation in human pre-B cell leukemia. Class I Hox proteins bind DNA cooperatively with both Pbx proteins and oncoprotein E2a-Pbx1, suggesting that leukemogenesis by E2a-Pbx1 and Hox proteins may alter transcription of cellular genes regulated by Pbx–Hox motifs. Likewise, in murine myeloid leukemia, transcriptional coactivation of Meis1 with HoxA7/A9 suggests that Meis1–HoxA7/9 heterodimers may evoke aberrant gene transcription. Here, we demonstrate that both Meis1 and its relative, pKnox1, dimerize with Pbx1 on the same TGATTGAC motif selected by dimers of Pbx proteins and unidentified partner(s) in nuclear extracts, including those from t(1;19) pre-B cells. Outside their homeodomains, Meis1 and pKnox1 were highly conserved only in two motifs required for cooperativity with Pbx1. Like the unidentified endogenous partner(s), both Meis1 and pKnox1 failed to dimerize significantly with E2a-Pbx1. The Meis1/pKnox1-interaction domain in Pbx1 resided predominantly in a conserved N-terminal Pbx domain deleted in E2a-Pbx1. Thus, the leukemic potential of E2a-Pbx1 may require abrogation of its interaction with members of the Meis and pKnox families of transcription factors, permitting selective targeting of genes regulated by Pbx–Hox complexes. In addition, because most motifs bound by Pbx–Meis1/pKnox1 were not bound by Pbx1–Hox complexes, the leukemic potential of Meis1 in myeloid leukemias may involve shifting Pbx proteins from promoters containing Pbx–Hox motifs to those containing Pbx–Meis motifs.
Resumo:
Expression patterns of six homeobox containing genes in a model chelicerate, the oribatid mite Archegozetes longisetosus, were examined to establish homology of chelicerate and insect head segments and to investigate claims that the chelicerate deutocerebral segment has been reduced or lost. engrailed (en) expression, which has been used to demonstrate the presence of segments in insects, fails to demonstrate a reduced deutocerebral segment. Expression patterns of the chelicerate homologs of the Drosophila genes Antennapedia (Antp), Sex combs reduced (Scr), Deformed (Dfd), proboscipedia (pb), and orthodenticle (otd) confirm direct correspondence of head segments. The chelicerate deutocerebral segment has not been reduced or lost. We make further inferences concerning the evolution of heads and Hox genes in arthropods.
Resumo:
Six alternative hypotheses for the phylogenetic origin of Bilateria are evaluated by using complete 18S rRNA gene sequences for 52 taxa. These data suggest that there is little support for three of these hypotheses. Bilateria is not likely to be the sister group of Radiata or Ctenophora, nor is it likely that Bilateria gave rise to Cnidaria or Ctenophora. Instead, these data reveal a close relationship between bilaterians, placozoans, and cnidarians. From this, several inferences can be drawn. Morphological features that previously have been identified as synapomorphies of Bilateria and Ctenophora, e.g., mesoderm, more likely evolved independently in each clade. The endomesodermal muscles of bilaterians may be homologous to the endodermal muscles of cnidarians, implying that the original bilaterian mesodermal muscles were myoepithelial. Placozoans should have a gastrulation stage during development. Of the three hypotheses that cannot be falsified with the 18S rRNA data, one is most strongly supported. This hypothesis states that Bilateria and Placozoa share a more recent common ancestor than either does to Cnidaria. If true, the simplicity of placozoan body architecture is secondarily derived from a more complex ancestor. This simplification may have occurred in association with a planula-type larva becoming reproductive before metamorphosis. If this simplification took place during the common history that placozoans share with bilaterians, then placozoan genes that contain a homeobox, such as Trox2, should be explored, for they may include the gene or genes most closely related to Hox genes of bilaterians.
Resumo:
The recurrent t(1;22)(p13;q13) translocation is exclusively associated with infant acute megakaryoblastic leukemia. We have identified the two genes involved in this translocation. Both genes possess related sequences in the Drosophila genome. The chromosome 22 gene (megakaryocytic acute leukemia, MAL) product is predicted to be involved in chromatin organization, and the chromosome 1 gene (one twenty-two, OTT) product is related to the Drosophila split-end (spen) family of proteins. Drosophila genetic experiments identified spen as involved in connecting the Raf and Hox pathways. Because almost all of the sequences and all of the identified domains of both OTT and MAL proteins are included in the predicted fusion protein, the OTT-MAL fusion could aberrantly modulate chromatin organization, Hox differentiation pathways, or extracellular signaling.
Resumo:
The expression patterns of developmental genes provide new markers that address the homology of body parts and provide clues as to how body plans have evolved. Such markers support the idea that insect wings evolved from limbs but refute the idea that insect and crustacean jaws are fundamentally different in structure. They also confirm that arthropod tagmosis reflects underlying patterns of Hox gene regulation but they do not yet resolve to what extent Hox expression domains may serve to define segment homologies.
Resumo:
Invertebrate species possess one or two Na+ channel genes, yet there are 10 in mammals. When did this explosive growth come about during vertebrate evolution? All mammalian Na+ channel genes reside on four chromosomes. It has been suggested that this came about by multiple duplications of an ancestral chromosome with a single Na+ channel gene followed by tandem duplications of Na+ channel genes on some of these chromosomes. Because a large-scale expansion of the vertebrate genome likely occurred before the divergence of teleosts and tetrapods, we tested this hypothesis by cloning Na+ channel genes in a teleost fish. Using an approach designed to clone all of the Na+ channel genes in a genome, we found six Na+ channel genes. Phylogenetic comparisons show that each teleost gene is orthologous to a Na+ channel gene or gene cluster on a different mammalian chromosome, supporting the hypothesis that four Na+ channel genes were present in the ancestors of teleosts and tetrapods. Further duplications occurred independently in the teleost and tetrapod lineages, with a greater number of duplications in tetrapods. This pattern has implications for the evolution of function and specialization of Na+ channel genes in vertebrates. Sodium channel genes also are linked to homeobox (Hox) gene clusters in mammals. Using our phylogeny of Na+ channel genes to independently test between two models of Hox gene evolution, we support the hypothesis that Hox gene clusters evolved as (AB) (CD) rather than {D[A(BC)]}.
Resumo:
The vertebrate Dlx gene family consists of homeobox-containing transcription factors distributed in pairs on the same chromosomes as the Hox genes. To investigate the evolutionary history of Dlx genes, we have cloned five new zebrafish family members and have provided additional sequence information for two mouse genes. Phylogenetic analyses of Dlx gene sequences considered in the context of their chromosomal arrangements suggest that an initial tandem duplication produced a linked pair of Dlx genes after the divergence of chordates and arthropods but prior to the divergence of tunicates and vertebrates. This pair of Dlx genes was then duplicated in the chromosomal events that led to the four clusters of Hox genes characteristic of bony fish and tetrapods. It is possible that a pair of Dlx genes linked to the Hoxc cluster has been lost from mammals. We were unable to distinguish between independent duplication and retention of the ancestral state of bony vertebrates to explain the presence of a greater number of Dlx genes in zebrafish than mammals. Determination of the linkage relationship of these additional zebrafish Dlx genes to Hox clusters should help resolve this issue.