991 resultados para HOUSEHOLD COMPOSITION
Resumo:
Background Zambia is a sub-Saharan country with one of the highest prevalence rates of HIV, currently estimated at 14%. Poor nutritional status due to both protein-energy and micronutrient malnutrition has worsened this situation. In an attempt to address this combined problem, the government has instigated a number of strategies, including the provision of antiretroviral (ARV) treatment coupled with the promotion of good nutrition. High-energy protein supplement (HEPS) is particularly promoted; however, the impact of this food supplement on the nutritional status of people living with HIV/AIDS (PLHA) beyond weight gain has not been assessed. Techniques for the assessment of nutritional status utilising objective measures of body composition are not commonly available in Zambia. The aim of this study is therefore to assess the impact of a food supplement on nutritional status using a comprehensive anthropometric protocol including measures of skinfold thickness and circumferences, plus the criterion deuterium dilution technique to assess total body water (TBW) and derive fat-free mass (FFM) and fat mass (FM). Methods/Design This community-based controlled and longitudinal study aims to recruit 200 HIV-infected females commencing ARV treatment at two clinics in Lusaka, Zambia. Data will be collected at four time points: baseline, 4-month, 8-month and 12-month follow-up visits. Outcome measures to be assessed include body height and weight, body mass index (BMI), body composition, CD4, viral load and micronutrient status. Discussion This protocol describes a study that will provide a longitudinal assessment of the impact of a food supplement on the nutritional status of HIV-infected females initiating ARVs using a range of anthropometric and body composition assessment techniques.
Resumo:
Particles emitted by vehicles are known to cause detrimental health effects, with their size and oxidative potential among the main factors responsible. Therefore, understanding the relationship between traffic composition and both the physical characteristics and oxidative potential of particles is critical. To contribute to the limited knowledge base in this area, we investigated this relationship in a 4.5 km road tunnel in Brisbane, Australia. On-road concentrations of ultrafine particles (<100 nm, UFPs), fine particles (PM2.5), CO, CO2 and particle associated reactive oxygen species (ROS) were measured using vehicle-based mobile sampling. UFPs were measured using a condensation particle counter and PM2.5 with a DustTrak aerosol photometer. A new profluorescent nitroxide probe, BPEAnit, was used to determine ROS levels. Comparative measurements were also performed on an above-ground road to assess the role of emission dilution on the parameters measured. The profile of UFP and PM2.5 concentration with distance through the tunnel was determined, and demonstrated relationships with both road gradient and tunnel ventilation. ROS levels in the tunnel were found to be high compared to an open road with similar traffic characteristics, which was attributed to the substantial difference in estimated emission dilution ratios on the two roadways. Principal component analysis (PCA) revealed that the levels of pollutants and ROS were generally better correlated with total traffic count, rather than the traffic composition (i.e. diesel and gasoline-powered vehicles). A possible reason for the lack of correlation with HDV, which has previously been shown to be strongly associated with UFPs especially, was the low absolute numbers encountered during the sampling. This may have made their contribution to in-tunnel pollution largely indistinguishable from the total vehicle volume. For ROS, the stronger association observed with HDV and gasoline vehicles when combined (total traffic count) compared to when considered individually may signal a role for the interaction of their emissions as a determinant of on-road ROS in this pilot study. If further validated, this should not be overlooked in studies of on- or near-road particle exposure and its potential health effects.
Resumo:
Differing parental considerations for girls and boys in households are perceived as one of the primary causes of the gender gap in school enrolment and educational attainment in developing countries, particularly in the countries in Sub-Saharan Africa and South Asia. While there are a number of studies on the gender gap focusing on education and health provision in the countries in South Asia, little is known about Bhutan. This thesis aims to explore the gender gap in the intra-household allocation of resources on schooling and health provision for children in Bhutan. This thesis investigates whether boys are shown preference by their parents in terms of educational opportunities, including enrolment and spending on schooling as well as health. To conduct examination, this study makes use of household data from the Bhutan Living Standard Survey of 2007. Using cross-sectional as well as household fixed and random effect approaches, this study attempts to analyse the gender gap in allocation of resources across households as well as within households. The analysis includes characteristics of children and households such as gender and age of children, family wealth, education and gender of household head, number of dependents and the area of residence. The findings reveal a significant gender gap in schooling of children aged six to sixteen in Bhutan. However, no robust evidence of a gender gap has been found in the allocation of health expenditure on children aged less than sixteen. Policy recommendations to alleviate the gender bias in educational opportunities of females are proposed.
Resumo:
Vehicle emissions are a significant source of fine particles (Dp < 2.5 µm) in an urban environment. These fine particles have been shown to have detrimental health effects, with children thought to be more susceptible. Vehicle emissions are mainly carbonaceous in nature, and carbonaceous aerosols can be defined as either elemental carbon (EC) or organic carbon (OC). EC is a soot-like material emitted from primary sources while OC fraction is a complex mixture of hundreds of organic compounds from either primary or secondary sources (Cao et al., 2006). Therefore the ratio of OC/EC can aid in the identification of source. The purpose of this paper is to use the concentration of OC and EC in fine particles to determine the levels of vehicle emissions in schools. It is expected that this will improve the understanding of the potential exposure of children in a school environment to vehicle emissions.
Resumo:
Many Brisbane houses were affected by water inundation as a result of the flooding event which occurred in January 2011. The combination of waterlogged materials and large amounts of silt and organic debris in affected homes gave rise to a situation where exposures to airborne particles and dust could potentially be elevated. However, swift action to remove wet materials can help to reduce moisture and humidity in flooded houses, in an effort to improve indoor air quality in and around flooded areas. In order to gain an understanding of the effect of flooding on the concentration of inorganic elements in indoor dust, field measurements were carried out during 21 March and 3 May, 2011.
Resumo:
In many countries, governments and health agencies are strongly promoting physical activity as a means to prevent the accumulation of fatness that leads to weight gain and obesity. However, there is often a resistance to respond to health promotion initiatives. For example, in the UK, the Chief Medical Officer has recently reported that 71% of women and 61% of men fail to carry out even the minimal amount of physical activity recommended in the government’s guidelines. Similarly, the Food safety Agency has promoted reductions in the intake of fat, sugar and salt but with very little impact on the pattern of consumption. Why is it that recommendations to improve health are so difficult to implement, and produce the desired outcome?
Resumo:
This piece is a contribution to a symposium on the relationship of literacy studies to composition studies. Three central foci of literacy studies have direct implications for composition studies: the shift from canonical to everyday texts, practices and literacy events; acknowledgement of ubiquitious student and community cultural and linguistic diversity; and the impact of new technologies on writing and education. The case is made for a major reconnoitering of the historical foundations of composition studies in theories of rhetoric and grammar.
Resumo:
The measurement of ventilation distribution is currently performed using inhaled tracer gases for multiple breath inhalation studies or imaging techniques to quantify spatial gas distribution. Most tracer gases used for these studies have properties different from that of air. The effect of gas density on regional ventilation distribution has not been studied. This study aimed to measure the effect of gas density on regional ventilation distribution. Methods Ventilation distribution was measured in seven rats using electrical impedance tomography (EIT) in supine, prone, left and right lateral positions while being mechanically ventilated with either air, heliox (30% oxygen, 70% helium) or sulfur hexafluoride (20% SF6, 20% oxygen, 60% air). The effect of gas density on regional ventilation distribution was assessed. Results Gas density did not impact on regional ventilation distribution. The non-dependent lung was better ventilated in all four body positions. Gas density had no further impact on regional filling characteristics. The filling characteristics followed an anatomical pattern with the anterior and left lung showing a greater impedance change during the initial phase of the inspiration. Conclusion It was shown that gas density did not impact on convection dependent ventilation distribution in rats measured with EIT.
Resumo:
Household air pollution (HAP), arising mainly from the combustion of solid and other polluting fuels, is responsible for a very substantial public health burden, most recently estimated as causing 3.5 million premature deaths in 2010. These patterns of household fuel use have also important negative impacts on safety, prospects for poverty reduction and the environment, including climate change. Building on previous air quality guidelines, the WHO is developing new guidelines focused on household fuel combustion, covering cooking, heating and lighting, and although global, the key focus is low and middle income countries reflecting the distribution of disease burden. As discussed in this paper, currently in development, the guidelines will include reviews of a wide range of evidence including fuel use in homes, emissions from stoves and lighting, household air pollution and exposure levels experienced by populations, health risks, impacts of interventions on HAP and exposure, and also key factors influencing sustainable and equitable adoption of improved stoves and cleaner fuels. GRADE, the standard method used for guidelines evidence review may not be well suited to the variety and nature of evidence required for this project, and a modified approach is being developed and tested. Work on the guidelines is being carried out in close collaboration with the UN Foundation Global Alliance on Clean cookstoves, allowing alignment with specific tools including recently developed international voluntary standards for stoves, and the development of country action plans. Following publication, WHO plans to work closely with a number of countries to learn from implementation efforts, in order to further strengthen support and guidance. A case study on the situation and policy actions to date in Bhutan provide an illustration of the challenges and opportunities involved, and the timely importance of the new guidelines and associated research, evaluation and policy development agendas.
Resumo:
The tertiary sector is an important employer and its growth is well above average. The Texo project’s aim is to support this development by making services tradable. The composition of new or value-added services is a cornerstone of the proposed architecture. It is, however, intended to cater for build-time. Yet, at run-time unforseen exceptions may occur and user’s requirements may change. Varying circumstances require immediate sensemaking of the situation’s context and call for prompt extensions of existing services. Lightweight composition technology provided by the RoofTop project enables domain experts to create simple widget-like applications, also termed enterprise mashups, without extensive methodological skills. In this way RoofTop can assist and extend the idea of service delivery through the Texo platform and is a further step towards a next generation internet of services.
Resumo:
Long term exposure to vehicle emissions has been associated with harmful health effects. Children are amongst the most susceptible group and schools represent an environment where they can experience significant exposure to vehicle emissions. However, there are limited studies on children’s exposure to vehicle emissions in schools. The aim of this study was to quantify the concentration of organic aerosol and in particular, vehicle emissions that children are exposed to during school hours. Therefore an Aerodyne compact time-of-flight aerosol mass spectrometer (TOF-AMS) was deployed at five urban schools in Brisbane, Australia. The TOF-AMS enabled the chemical composition of the non- refractory (NR-PM1) to be analysed with a high temporal resolution to assess the concentration of vehicle emissions and other organic aerosols during school hours. At each school the organic fraction comprised the majority of NR-PM1 with secondary organic aerosols as the main constitute. At two of the schools, a significant source of the organic aerosol (OA) was slightly aged vehicle emissions from nearby highways. More aged and oxidised OA was observed at the other three schools, which also recorded strong biomass burning influences. Primary emissions were found to dominate the OA at only one school which had an O:C ratio of 0.17, due to fuel powered gardening equipment used near the TOF-AMS. The diurnal cycle of OA concentration varied between schools and was found to be at a minimum during school hours. The major organic component that school children were exposed to during school hours was secondary OA. Peak exposure of school children to HOA occurred during school drop off and pick up times. Unless a school is located near major roads, children are exposed predominately to regional secondary OA as opposed to local emissions during schools hours in urban environments.
Resumo:
In order to provide realistic data for air pollution inventories and source apportionment at airports, the morphology and composition of ultrafine particles (UFP) in aircraft engine exhaust were measured and characterized. For this purpose, two independent measurement techniques were employed to collect emissions during normal takeoff and landing operations at Brisbane Airport, Australia. PM1 emissions in the airfield were collected on filters and analyzed using the particle-induced X-ray emission (PIXE) technique. Morphological and compositional analyses of individual ultrafine particles in aircraft plumes were performed on silicon nitride membrane grids using transmission electron microscopy (TEM) combined with energy-dispersive X-ray microanalysis (EDX). TEM results showed that the deposited particles were in the range of 5 to 100 nm in diameter, had semisolid spherical shapes and were dominant in the nucleation mode (18 – 20 nm). The EDX analysis showed the main elements in the nucleation particles were C, O, S and Cl. The PIXE analysis of the airfield samples was generally in agreement with the EDX in detecting S, Cl, K, Fe and Si in the particles. The results of this study provide important scientific information on the toxicity of aircraft exhaust and their impact on local air quality.
Resumo:
Previous research employing indirect measures of arch structure, such as those derived from footprints, have indicated that obesity results in a “flatter” foot type. In the absence of radiographic measures, however, definitive conclusions regarding the osseous alignment of the foot cannot be made. We determined the effect of body mass index (BMI) on radiographic and footprint‐based measures of arch structure. The research was a cross‐sectional study in which radiographic and footprint‐based measures of foot structure were made in 30 subjects (10 males, 20 female) in addition to standard anthropometric measures of height, weight, and BMI. Multiple (univariate) regression analysis demonstrated that both BMI ( β = 0.39, t 26 = 2.12, p = 0.04) and radiographic arch alignment ( β = 0.51, t 26 = 3.32, p < 0.01) were significant predictors of footprint‐based measures of arch height after controlling for all variables in the model ( R 2 = 0.59, F 3,26 = 12.3, p < 0.01). In contrast, radiographic arch alignment was not significantly associated with BMI ( β = −0.03, t 26 = −0.13, p = 0.89) when Arch Index and age were held constant ( R 2 = 0.52, F 3,26 = 9.3, p < 0.01). Adult obesity does not influence osseous alignment of the medial longitudinal arch, but selectively distorts footprint‐based measures of arch structure. Footprint‐based measures of arch structure should be interpreted with caution when comparing groups of varying body composition.
Resumo:
To date, the formation of deposits on heat exchanger surfaces is the least understood problem in the design of heat exchangers for processing industries. Dr East has related the structure of the deposits to solution composition and has developed predictive models for composite fouling of calcium oxalate and silica in sugar factory evaporators.