966 resultados para HOST-PARASITE INTERPLAY
Resumo:
Most of our knowledge concerning the virulence determinants of pathogenic fungi comes from the infected host, mainly from animal models and more recently from in vitro studies with cell cultures. The fungi usually present intra- and/or extracellular host-parasite interfaces, with the parasitism phenomenon dependent on complementary surface molecules. Among living organisms, this has been characterized as a cohabitation event, where the fungus is able to recognize specific host tissues acting as an attractant, creating stable conditions for its survival. Several fungi pathogenic for humans and animals have evolved special strategies to deliver elements to their cellular targets that may be relevant to their pathogenicity. Most of these pathogens express surface factors that mediate binding to host cells either directly or indirectly, in the latter case binding to host adhesion components such as extracellular matrix (ECM) proteins, which act as 'interlinking' molecules. The entry of the pathogen into the host cell is initiated by fungal adherence to the cell surface, which generates an uptake signal that may induce its cytoplasmic internalization. Once this is accomplished, some fungi are able to alter the host cytoskeletal architecture, as manifested by a rearrangement of microtubule and microfilament proteins, and this can also induce epithelial host cells to become apoptotic. It is possible that fungal pathogens induce modulation of different host cell pathways in order to evade host defences and to foster their own proliferation. For a number of pathogens, the ability to bind ECM glycoproteins, the capability of internalization and the induction of apoptosis are considered important factors in virulence. Furthermore, specific recognition between fungal parasites and their host cell targets may be mediated by the interaction of carbohydrate-binding proteins, e.g., lectins on the surface of one type of cell, probably a parasite, that combine with complementary sugars on the surface of host-cell. These interactions supply precise models to study putative adhesins and receptor-containing molecules in the context of the fungus-host interface. The recognition of the host molecules by fungi such as Aspergillus fumigatus, Paracoccidioides brasiliensis and Histoplasma capsulatum, and their molecular mechanisms of adhesion and invasion, are reviewed in this paper.
Resumo:
This review provides an overview of several molecular and cellular approaches that are likely to supply insights into the host-fungus interaction. Fungi present intra- and/or extracellular host-parasite interfaces, the parasitism phenomenon being dependent on complementary surface molecules. The entry of the pathogen into the host cell is initiated by the fungus adhering to the cell surface, which generates an uptake signal that may induce its cytoplasmatic internalization. Furthermore, microbial pathogens use a variety of their surface molecules to bind to host extracellular matrix (ECM) components to establish an effective infection. on the other hand, integrins mediate the tight adhesion of cells to the ECM at sites referred to as focal adhesions and also play a role in cell signaling. The phosphorylation process is an important mechanism of cell signaling and regulation; it has been implicated recently in defense strategies against a variety of pathogens that alter host-signaling pathways in order to facilitate their invasion and survival within host cells. The study of signal transduction pathways in virulent fungi is especially important in view of their putative role in the regulation of pathogenicity. This review discusses fungal adherence, changes in cytoskeletal organization and signal transduction in relation to host-fungus interaction. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Most parasite-host relationships are characterized by the development of resistance by the host, thus limiting the number of parasites. However, some cases are very unusual. In the relationship of the domestic dog with the brown dog-tick Rhipicephalus sanguineus this does not occur, whereas guinea pigs develop efficient resistance. Sera from domestic dogs, crab-eating foxes and guinea pigs collected before and after infestation with R. sanguineus ticks, and after immunization with a whole tick adult or larval homogenate, were used in Western blot analysis to compare and identify potential important antigens from a tick larval homogenate. The same sera were tested in an indirect immunohistochemistry assay in an attempt to compare relevant antigenic sites on histological tick sections. The immunoblotting displayed antigens recognized only by the guinea pigs, as well as several shared antigens between host species, depending on the kind of immunization. Immunohistochemistry revealed probable antigenic sites on the cells and tissues of ticks, which varied depending on the kind of immunization (infestation or vaccination) and the animal species involved.
Resumo:
The determination of mean intensity of parasitism for colony-forming sessile protozoan such as Epistylis has been a great problem in parasitological studies. Some alternatives have been proposed by researchers for laboratory and field conditions. This study describes the criteria to establish the parasitic intensity score for epistylidid infestation in fish. Parasite distribution and the host-parasite relationship in four species of Brazilian cultured catfish and their hybrids are discussed. The highest prevalence rates were found in the hybrid jundiara, Leiarius marmoratus male × Pseudoplatystoma reticulatum female (96.4 %), followed by jurupoca, Hemisorubim platyrhynchos (60 %), and the hybrid surubim, Pseudoplatystoma corruscans male × P. reticulatum female (52.7 %). Positive correlation between parasitic intensity score and the fish size, weight, and relative condition factor were also observed. These findings indicate that Epistylis infestation in Brazilian catfish is an emerging disease in cultured fish. © 2012 Springer-Verlag.
Resumo:
Background: The aim of this study is to characterize and evaluate the host response caused by three different models of experimental periodontitis in mice.Methods: C57BL/6 wild-type female mice were distributed into six experimental groups and sacrificed at 7, 15, and 30 days after the induction of periodontal disease: 1) group C: no treatment control group; 2) group L: periodontal disease induced by ligature; 3) group G-Pg: oral gavage with Porphyromonas gingivalis (Pg); 4) group G-PgFn: oral gavage with Fusobacterium nucleatum + Pg; 5) group I-Pg: heat-killed Pg injected into the palatal mucosa between the molars; and 6) group I-V: phosphatebuffered saline injected into the palatal mucosa. The samples were used to analyze the immune-inflammatory process in the gingival tissue via descriptive histologic and real-time polymerase chain reaction analyses. The alveolar bone loss was evaluated using microcomputed tomography. The data were analyzed using the Kruskal-Wallis test, followed by a post hoc Dunn test and analysis of variance, followed by a Tukey test using a 5% significance level.Results: Only the ligature model displayed significant alveolar bone loss in the initial period (7 days), which was maintained with time. The group injected with heat-killed Pg displayed significant alveolar bone loss starting from day 15, which continued to progress with time (P < 0.05). A significant increase (P < 0.05) in the gene expression of proinflammatory cytokines (interleukin-6 and -1b) and proteins involved in osteoclastogenesis (receptor activator of nuclear factor-kB ligand and osteoprotegerin) was observed in the ligature group on day 7.Conclusion: The ligature and injection of heat-killed Pg models were the most representative of periodontal disease in humans, whereas the oral gavage models were not effective at inducing the disease under the experimental conditions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Larval infection with Echinococcus multilocularis starts with the intrahepatic postoncospheral development of a metacestode that-at its mature stage-consists of an inner germinal and an outer laminated layer (GL ; LL). In certain cases, an appropriate host immune response may inhibit parasite proliferation. Several lines of evidence obtained in vivo and in vitro indicate the important bio-protective role of the LL. For instance, the LL has been proposed to protect the GL from nitric oxide produced by periparasitic macrophages and dendritic cells, and also to prevent immune recognition by surrounding T cells. On the other hand, the high periparasitic NO production by peritoneal exsudate cells contributes to periparasitic immunosuppression, explaining why iNOS deficienct mice exhibit a significantly lower susceptibility towards experimental infection. The intense periparasitic granulomatous infiltration indicates a strong host-parasite interaction, and the involvement of cellular immunity in control of the metacestode growth kinetics is strongly suggested by experiments carried out in T cell deficient mouse strains. Carbohydrate components of the LL, such as Em2(G11) and Em492, as well as other parasite metabolites yield immunomodulatory effects that allow the parasite to survive in the host. I.e., the IgG response to the Em2(G11)-antigen takes place independently of alpha-beta+CD4+T cells, and in the absence of interactions between CD40 and CD40 ligand. Such parasite molecules also interfere with antigen presentation and cell activation, leading to a mixed Th1/Th2-type response at the later stage of infection. Furthermore, Em492 and other (not yet published) purified parasite metabolites suppress ConA and antigen-stimulated splenocyte proliferation. Infected mouse macrophages (AE-MØ) as antigen presenting cells (APC) exhibited a reduced ability to present a conventional antigen (chicken ovalbumin, C-Ova) to specific responder lymph node T cells when compared to normal MØ. As AE-MØ fully maintain their capacity to appropriately process antigens, a failure in T cell receptor occupancy by antigen-Ia complex or/and altered co-stimulatory signals can be excluded. Studying the status of accessory molecules implicated in T cell stimulation by MØ, it could be shown that B7-1 (CD80) and B7-2 (CD86) remained unchanged, whereas CD40 was down-regulated and CD54 (=ICAM-1) slightly up-regulated. FACS analysis of peritoneal cells revealed a decrease in the percentage of CD4+ and CD8+T cells in AE-infected mice. Taken together the obstructed presenting-activity of AE-MØ appeared to trigger an unresponsiveness of T cells leading to the suppression of their clonal expansion during the chronic phase of AE infection. Interesting information on the parasite survival strategy and potential can be obtained upon in vitro and in vivo treatment. Hence, we provided very innovative results by showing that nitazoxanide, and now also, respectively, new modified compounds may represent a useful alternative to albendazole. In the context of chemotherapeutical repression of parasite growth, we searched also for parasite molecules, whose expression levels correlate with the viability and growth activity of E. multilocularis metacestode. Expression levels of 14-3-3 and II/3-10, relatively quantified by realtime reverse transcription-PCR using a housekeeping gene beta-actin, were studied in permissive nu/nu and in low-permissive wild type BALB/c mice. At 2 months p.i., the transcription level of 14-3-3 was significantly higher in parasites actively proliferating in nu/nu mice compared to parasites moderately growing in wild type mice. Immunoblotting experiments confirmed at the protein level that 14-3-3 was over-expressed in parasites derived from nu/nu mice at 2 months p.i. In vitro-treatment of E. multilocularis with an anti-echinococcal drug nitazoxanide for a period of 8 days resulted in a significant decrease of both 14-3-3 and II/3-10 transcription levels,
Resumo:
While many myxozoan parasites produce asymptomatic infections in fish hosts, several species cause diseases whose patterns of prevalence and pathogenicity are highly dependent on host and environmental factors. This chapter reviews how these factors influence pathogenicity and disease prevalence. Influential host factors include age, size and nutritional state. There is also strong evidence for host strains that vary in resistance to infection and that there is a genetic basis for resistance. A lack of co-evolutionary processes appears to generally underly the devastating impacts of diseases caused by myxozoans when introduced fish are exposed to novel parasites (e.g. PKD in rainbow trout in Europe) or when native fish are exposed to an introduced parasite (e.g. whirling disease in North America). Most available information on abiotic factors relates to water temperature, which has been shown to play a crucial role in several host parasite systems (e.g. whirling disease, PKD) and is therefore of concern in view of global warming, fish health and food sustainability. Eutrophication may also influence disease development. Abiotic factors may also drive fish disease via their impact on parasite development in invertebrate hosts.
Resumo:
Plasmodium sporozoites are transmitted by Anopheles mosquitoes and infect hepatocytes, where a single sporozoite replicates into thousands of merozoites inside a parasitophorous vacuole. The nature of the Plasmodium-host cell interface, as well as the interactions occurring between these two organisms, remains largely unknown. Here we show that highly dynamic hepatocyte actin reorganization events occur around developing Plasmodium berghei parasites inside human hepatoma cells. Actin reorganization is most prominent between 10 to 16 hours post infection and depends on the actin severing and capping protein, gelsolin. Live cell imaging studies also suggest that the hepatocyte cytoskeleton may contribute to parasite elimination during Plasmodium development in the liver.
Resumo:
BACKGROUND The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. RESULTS Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. CONCLUSIONS Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.
Resumo:
The way in which the huge Australian parasite fauna is described (discovery and naming) is the subject of this address. The approach to the task has never been well-organised so that a few groups of parasites are now relatively well-known because of the efforts of small groups of workers who have made sustained efforts in these groups, but equally some host-parasite systems have been almost completely ignored in that no worker has ever given them sustained attention. A high proportion of Australian parasites have been described by international workers; The sustaining of interest in a group of parasites over a long period is the key to real progress being made. The nature of the organisation of Australian science presently means that few positions are available for parasite taxonomists and funding for taxonomic research is scarce. Thus, parasite taxonomy (like the taxonomy of many groups of Australian plants and animals) can only be considered to be in crisis. (C) 2003 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Invasive stages of apicomplexan parasites require a host cell to survive, proliferate and advance to the next life cycle stage. Once invasion is achieved, apicomplexans interact closely with the host cell cytoskeleton, but in many cases the different species have evolved distinct mechanisms and pathways to modulate the structural organization of cytoskeletal filaments. The host cell cytoskeleton is a complex network, largely, but not exclusively, composed of microtubules, actin microfilaments and intermediate filaments, all of which are modulated by associated proteins, and it is involved in diverse functions including maintenance of cell morphology and mechanical support, migration, signal transduction, nutrient uptake, membrane and organelle trafficking and cell division. The ability of apicomplexans to modulate the cytoskeleton to their own advantage is clearly beneficial. We here review different aspects of the interactions of apicomplexans with the three main cytoskeletal filament types, provide information on the currently known parasite effector proteins and respective host cell targets involved, and how these interactions modulate the host cell physiology. Some of these findings could provide novel targets that could be exploited for the development of preventive and/or therapeutic strategies.
Resumo:
Spatial disease ecology is emerging as a new field that requires the integration of complementary approaches to address how the distribution and movements of hosts and parasites may condition the dynamics of their interactions. In this context, migration, the seasonal movement of animals to different zones of their distribution, is assumed to play a key role in the broad scale circulation of parasites and pathogens. Nevertheless, migration is not the only type of host movement that can influence the spatial ecology, evolution, and epidemiology of infectious diseases. Dispersal, the movement of individuals between the location where they were born or bred to a location where they breed, has attracted attention as another important type of movement for the spatial dynamics of infectious diseases. Host dispersal has notably been identified as a key factor for the evolution of host-parasite interactions as it implies gene flow among local host populations and thus can alter patterns of coevolution with infectious agents across spatial scales. However, not all movements between host populations lead to dispersal per se. One type of host movement that has been neglected, but that may also play a role in parasite spread is prospecting, i.e., movements targeted at selecting and securing new habitat for future breeding. Prospecting movements, which have been studied in detail in certain social species, could result in the dispersal of infectious agents among different host populations without necessarily involving host dispersal. In this article, we outline how these various types of host movements might influence the circulation of infectious disease agents and discuss methodological approaches that could be used to assess their importance. We specifically focus on examples from work on colonial seabirds, ticks, and tick-borne infectious agents. These are convenient biological models because they are strongly spatially structured and involve relatively simple communities of interacting species. Overall, this review emphasizes that explicit consideration of the behavioral and population ecology of hosts and parasites is required to disentangle the relative roles of different types of movement for the spread of infectious diseases.