163 resultados para HOLOGRAPHY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional 3D Integral imaging suffers from limited image depth range due to the fixed distance between the display panel and the lens array, while digital Fresnel holography suffers from a narrow viewing angle due to the lack of a high resolution spatial light modulator. This paper proposes an original system which combines the advantages of these two techniques to provide an integral imaging system of a reasonable viewing angle with accommodation cues. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove theoretically and experimentally the concept of polarization holography by producing visible diffraction through radiation emitted by plasmonic nanoantennas. We show a methodology to selectively activate the nanoantenna emission by controlling the orientation of the electric field of a beam. Additionally, we demonstrate that it is possible to superpose two independent transverse nanoantennas in the same plane without producing interference in their radiated field. Hence, we introduce an alternative view to the traditional concept of holography where fringes (or diffractive units) are band-limited to half the wavelength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper demonstrates how techniques from computational holography can be employed to significantly improve the modal selectivity of phase masks used in mode division multiplexing. © 2012 OSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper demonstrates how techniques from computational holography can be employed to significantly improve the modal selectivity of phase masks used in mode division multiplexing. © 2012 OSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specific fibre modes are deliberately excited in a few-mode and multimode fibre using holography. The same system is also used to demonstrate holography's ability to detect and route individual fibre modes. © OSA/OFC/NFOEC 2011.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The variety of laser systems available to industrial laser users is growing and the choice of the correct laser for a material target application is often based on an empirical assessment. Industrial master oscillator power amplifier systems with tuneable temporal pulse shapes have now entered the market, providing enormous pulse parameter flexibility in an already crowded parameter space. In this paper, an approach is developed to design interaction parameters based on observations of material responses. Energy and material transport mechanisms are studied using pulsed digital holography, post process analysis techniques and finite-difference modelling to understand the key response mechanisms for a variety of temporal pulse envelopes incident on a silicon (1/1/1) substrate. The temporal envelope is shown to be the primary control parameter of the source term that determines the subsequent material response and the resulting surface morphology. A double peak energy-bridged temporal pulse shape designed through direct application of holographic imaging data is shown to substantially improve surface quality. © 2014 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diverse functionalities of liquid crystals (LCs) offer enormous opportunities for their potential use in advanced mobile and smart displays, as well as novel non-display applications. Here, we present snapshots of the research carried out on emerging applications of LCs ranging from electronics to holography and self-powered systems. In addition, we will show our recent results focused on the development of new LC applications, such as programmable transistors, a transparent and active-type two-dimensional optical array and self-powered display systems based on LCs, and will briefly discuss their novel concepts and basic operating principles. Our research will give insights not only into comprehensively understanding technical and scientific applications of LCs, but also developing new discoveries of other LC-based devices. © 2014 by the authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers emitting at 4.7 mu m. A rectangular photonic crystal lattice perpendicular to the cleaved facet was defined using holographic lithography. The anticrossing of the index- and Bragg-guided dispersions of rectangular lattice forms the band-edge mode with extended mode volume and reduced group velocity. Utilizing this coupling mechanism, single mode operation with a near-diffractive-limited divergence angle of 12 degrees is obtained for 33 mu m wide devices in a temperature range of 85-300 K. The reduced threshold current densities and improved heat dissipation management contribute to the realization of devices' room temperature operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recording with both parallel and orthogonal linearly polarized lights, polarization holographic storage in genetic mutant BR-D96N film is reported with both transmission type geometry and reflection type geometry. Polarization properties of diffraction light and scattering light are discussed for two different cases, parallel polarization recording and orthogonal polarization recording. It shows that, compared with recording with parallel polarization lights, orthogonal polarization holography can separate the diffraction light from the scattering noise, therefore improving the signal-to-noise ratio. It also shows that, compared with reconstruction with reference light, reconstruction with phase conjugated wave of the reference light can improve the signal-to-noise ratio of the reconstructed diffraction image, and also the wave-front aberration of the object light introduced by irregular phase object in the optical pass-way can also be corrected effectively, which ensures that the reconstructed diffraction image has a better fidelity. The preliminary angle-multiplexed volume holographic storage multiplexed by transmission type geometry and reflection type geometry is demonstrated in the BR-D96N film. Experiment shows that there is no cross-talk between the two pages of images except for some scattering noises.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate a simple approach for inline holographic coherent anti-Stokes Raman scattering (CARS) microscopy, in which a layer of uniform nonlinear medium is placed in front of a specimen to be imaged. The reference wave created by four-wave mixing in the nonlinear medium can interfere with the CARS signal generated in the specimen to result in an inline hologram. We experimentally and theoretically investigate the inline CARS holography and show that it has chemical selectivity and can allow for three-dimensional imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parametric interactions in nonlinear crystals represent a powerful tool in the optical manipulation of information, both in the classical and the quantum regime. Here, we analyze in detail classical and quantum aspects of three-and five-mode parametric interactions in chi(2) nonlinear crystals. The equations of motion are explicitly derived and then solved within the parametric approximation. We describe several applications, including holography, all-optical gates, generation of entanglement, and telecloning. Experimental results on the photon distributions and correlations of the generated beams are also reported and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LOW-ENERGY electron diffraction (LEED) has become the most successful technique in surface crystallography1, but because of the complexity of the surface-electron scattering interactions, analyses of LEED data are still conducted on a trial-and-error basis: a direct-inversion method for treating LEED intensity data remains an attractive goal2. Building on recent theoretical and experimental developments in electron holography from surface structures3-16, we show here that three-dimensional images with atomic resolution can be obtained by a direct transform of conventional LEED intensity spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An exact multiple-scattering formalism is used to simulate a wave multiply scattered from a cluster, and this is used to provide a direct quantitative analysis of the influence of multiple scattering on holographic imaging. Although multiple scattering may help in identifying atomic positions in real space, we show that it does cause a loss of resolution. We also show that a filter function can considerably reduce the multiple-scattering contribution to holographic images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We break down photoelectron diffraction intensities into four terms in analogy to optical holography and discuss the effect of each term on reconstructed images. The second term involving products of scattered waves SIGMA-SIGMA-O(i)O(j)*, is in this case not structure-less. Theoretical analysis and simulations demonstrate that this term may lead to spurious features in real space images in holographic transforms of medium energy electron diffraction patterns. If it is small enough the problem may be overcome by an iterative correction process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Red blood cell (RBC) parameters such as morphology, volume, refractive index, and hemoglobin content are of great importance for diagnostic purposes. Existing approaches require complicated calibration procedures and robust cell perturbation. As a result, reference values for normal RBC differ depending on the method used. We present a way for measuring parameters of intact individual RBCs by using digital holographic microscopy (DHM), a new interferometric and label-free technique with nanometric axial sensitivity. The results are compared with values achieved by conventional techniques for RBC of the same donor and previously published figures. A DHM equipped with a laser diode (lambda = 663 nm) was used to record holograms in an off-axis geometry. Measurements of both RBC refractive indices and volumes were achieved via monitoring the quantitative phase map of RBC by means of a sequential perfusion of two isotonic solutions with different refractive indices obtained by the use of Nycodenz (decoupling procedure). Volume of RBCs labeled by membrane dye Dil was analyzed by confocal microscopy. The mean cell volume (MCV), red blood cell distribution width (RDW), and mean cell hemoglobin concentration (MCHC) were also measured with an impedance volume analyzer. DHM yielded RBC refractive index n = 1.418 +/- 0.012, volume 83 +/- 14 fl, MCH = 29.9 pg, and MCHC 362 +/- 40 g/l. Erythrocyte MCV, MCH, and MCHC achieved by an impedance volume analyzer were 82 fl, 28.6 pg, and 349 g/l, respectively. Confocal microscopy yielded 91 +/- 17 fl for RBC volume. In conclusion, DHM in combination with a decoupling procedure allows measuring noninvasively volume, refractive index, and hemoglobin content of single-living RBCs with a high accuracy.