932 resultados para HOGG1 SER326CYS POLYMORPHISM
Resumo:
Polymorphism in the orcinol: 4,4'-bipyridine cocrystal system is analyzed in terms of a robust convergent modular phenol...pyridine supramolecular synthon. Employing the Synthon Based Fragments Approach (SBFA) to transfer the multipole charge density parameters, it is demonstrated that the crystal landscape can be quantified in terms of intermolecular interaction energies in the five crystal forms so far isolated in this complex system. There are five crystal forms. The first has an open, divergent O-H...N based structure with alternating orcinol and bipyridine molecules. The other four polymorphs have different three-dimensional packing but all of them are similar at an interaction level, and are based on a modular O-H...N mediated supramolecular synthon that consists of two orcinol and two bipyridine molecules in a closed, convergent structure. The SBFA method, which depends on the modularity of synthons, provides good agreement between experiment and theory because it takes into account the supramolecular contribution to charge density. The existence of five crystal forms in this system shows that polymorphism in cocrystals need not be considered to be an unusual phenomenon. Studies of the crystal landscape could lead to an understanding of the kinetic pathways that control the crystallization processes, in other words the valleys in the landscape. These pathways are traditionally not considered in exercises pertaining to computational crystal structure prediction, which rather monitors the thermodynamics of the various stable forms in the system, in other words the peaks in the landscape.
Resumo:
The nature of interaction between a heteronucleating agent (graphene oxide, GO) and a strongly polar macromolecule (poly(ethylenimine), PEI) with poly(vinylidene fluoride) (PVDF) influencing the crystalline structure and morphology has been systematically investigated in this work. PEI interacts with PVDF via ion-dipole interaction, which helps in lowering the free energy barrier for nucleation thereby promoting faster crystallization. In contrast, besides interacting with PVDF, GO also promotes heteronucleation in PVDF. We observed that both GO and PEI have very different effects on the overall crystalline morphology of PVDF. For instance, the neat PVDF showed a mixture of both alpha and beta phases when cooled from the melt. However, incorporation of 0.1 wt % GO resulted in phase transformation from the stable alpha-phase to polar beta-polymorph in PVDF. In contrast, PEI, which also resulted in faster crystallization in PVDF predominantly, resulted in the stable alpha- phase. Various techniques like Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry were employed to confirm the phase transformations in PVDF. PEI was further grafted onto GO nanosheets to understand the combined effects of both GO and PEI on the polymorphism in PVDF. The PVDF/PEI-GO composite showed a mixture of phases, predominantly rich in a. These phenomenal effects were further analyzed and corroborated with the specific interaction between GO and PEI with PVDF using X-ray photon scattering (XPS) and NMR. In addition, the dielectric permittivity increased significantly in the presence of GO and PEI in the composites. For instance, PVDF/PEI-GO showed the highest permittivity of 39 at 100 Hz.
Resumo:
Poly(vinylidene difluoride), a well-known candidate for artificial muscle patch applications is a semi-crystalline polymer with a host of attributes such as piezo- and pyroelectricity, polymorphism along with low dielectric constant and stiffness. The present work explores the unique interplay among the factors (conductivity, polymorphism and electrical stimulation) towards cell proliferation on poly(vinylidene difluoride) (PVDF)-based composites. In this regard, multi-walled carbon nanotubes (MWNTs) are introduced in the PVDF matrix (limited to 2%) through melt mixing to increase the conductivity of PVDF. The addition of MWNTs also led to an increase in the fraction of piezoelectric beta-phase, tensile strength and modulus. The melting and crystallization behaviour of PVDF-MWNT together with FT-IR confirms that the crystallization is found to be aided by the presence of MWNT. The conducting PVDF-MWNTs are used as substrates for the growth of C2C12 mouse myoblast cells and electrical stimulation with a range of field strengths (0-2 V cm(-1)) is intermittently delivered to the cells in culture. The cell viability results suggest that metabolically active cell numbers can statistically increase with electric stimulation up to 1 V cm(-1), only on the PVDF + 2% MWNT. Summarising, the current study highlights the importance of biophysical cues on cellular function at the cell-substrate interface. This study further opens up new avenues in designing conducting substrates, that can be utilized for enhancing cell viability and proliferation and also reconfirms the lack of toxicity of MWNTs, when added in a tailored manner.
Resumo:
The unusual phenomenon of the formation of the kinetic form as against the thermodynamic form upon slow cooling of boiling aqueous solution in the case of diuretic drug acetazolamide is rationalized in terms of ``hybridization induced polymorphism'' based on extensive experimental and theoretical investigations.
Resumo:
(PDF has 6 pages.)
Resumo:
6 p.
Resumo:
The common 2652 6N del variant in the CASP8 promoter (rs3834129) has been described as a putative low-penetrance risk factor for different cancer types. In particular, some studies suggested that the deleted allele (del) was inversely associated with CRC risk while other analyses failed to confirm this. Hence, to better understand the role of this variant in the risk of developing CRC, we performed a multi-centric case-control study. In the study, the variant 2652 6N del was genotyped in a total of 6,733 CRC cases and 7,576 controls recruited by six different centers located in Spain, Italy, USA, England, Czech Republic and the Netherlands collaborating to the international consortium COGENT (COlorectal cancer GENeTics). Our analysis indicated that rs3834129 was not associated with CRC risk in the full data set. However, the del allele was under-represented in one set of cases with a family history of CRC (per allele model OR = 0.79, 95% CI = 0.69-0.90) suggesting this allele might be a protective factor versus familial CRC. Since this multi-centric case-control study was performed on a very large sample size, it provided robust clarification of the effect of rs3834129 on the risk of developing CRC in Caucasians.
Resumo:
Background: The aim of this study is to examine the influence of the catechol-O-methyltranferase (COMT) gene (polymorphism Val158 Met) as a risk factor for Alzheimer's disease (AD) and mild cognitive impairment of amnesic type (MCI), and its synergistic effect with the apolipoprotein E gene (APOE). A total of 223 MCI patients, 345 AD and 253 healthy controls were analyzed. Clinical criteria and neuropsychological tests were used to establish diagnostic groups. The DNA Bank of the University of the Basque Country (UPV-EHU) (Spain) determined COMT Val158 Met and APOE genotypes using real time polymerase chain reaction (rtPCR) and polymerase chain reaction (PCR), and restriction fragment length polymorphism (RFLPs), respectively. Multinomial logistic regression models were used to determine the risk of AD and MCI. Results: Neither COMT alleles nor genotypes were independent risk factors for AD or MCI. The high activity genotypes (GG and AG) showed a synergistic effect with APOE epsilon 4 allele, increasing the risk of AD (OR = 5.96, 95% CI 2.74-12.94, p < 0.001 and OR = 6.71, 95% CI 3.36-13.41, p < 0.001 respectivily). In AD patients this effect was greater in women. In MCI patients such as synergistic effect was only found between AG and APOE epsilon 4 allele (OR = 3.21 95% CI 1.56-6.63, p = 0.02) and was greater in men (OR = 5.88 95% CI 1.69-20.42, p < 0.01). Conclusion: COMT (Val158 Met) polymorphism is not an independent risk factor for AD or MCI, but shows a synergistic effect with APOE epsilon 4 allele that proves greater in women with AD.
Resumo:
The common 2652 6N del variant in the CASP8 promoter (rs3834129) has been described as a putative low-penetrance risk factor for different cancer types. In particular, some studies suggested that the deleted allele (del) was inversely associated with CRC risk while other analyses failed to confirm this. Hence, to better understand the role of this variant in the risk of developing CRC, we performed a multi-centric case-control study. In the study, the variant 2652 6N del was genotyped in a total of 6,733 CRC cases and 7,576 controls recruited by six different centers located in Spain, Italy, USA, England, Czech Republic and the Netherlands collaborating to the international consortium COGENT (COlorectal cancer GENeTics). Our analysis indicated that rs3834129 was not associated with CRC risk in the full data set. However, the del allele was under-represented in one set of cases with a family history of CRC (per allele model OR = 0.79, 95% CI = 0.69-0.90) suggesting this allele might be a protective factor versus familial CRC. Since this multi-centric case-control study was performed on a very large sample size, it provided robust clarification of the effect of rs3834129 on the risk of developing CRC in Caucasians.